Training Global Linear Models for Chinese
Word Segmentation*

Dong Song and Anoop Sarkar

School of Computing Science, Simon Fraser University
Burnaby, BC, Canada V5A1S6,
dsong@alumni.sfu.ca, anoop@cs.sfu.ca

Abstract. This paper examines how one can obtain state of the art
Chinese word segmentation using global linear models. We provide ex-
perimental comparisons that give a detailed road-map for obtaining state
of the art accuracy on various datasets. In particular, we compare the
use of reranking with full beam search; we compare various methods for
learning weights for features that are full sentence features, such as lan-
guage model features; and, we compare an Averaged Perceptron global
linear model with the Exponentiated Gradient max-margin algorithm.

1 Introduction

The written form of many languages, including Chinese, do not have marks iden-
tifying words. Given the Chinese text “JtIi K247, a plausible segmenta-
tion would be “JbIT(Beijing)/ K24 (university students)/ . #%(competition)”

(Competition among university students in Beijing). However, if “JbI{ K2
is taken to mean Beijing University, the segmentation for the above charac-
ter sequence might become “JtIT A 2%(Beijing University)/E (give birth to) /.
%% (competition)” (Beijing University gives birth to competition), which is less
plausible. Chinese word segmentation has a large community of researchers, and
has resulted in three shared tasks: the SIGHAN bakeoffs [1-3]. Word segmenta-
tion can be treated as a supervised sequence learning (or tagging) task. As in
other tagging tasks, the most accurate models are discriminative models such
as conditional random fields (CRFs) [4], perceptron [5], or various max-margin
sequence models, such as [6,7]. [5] provides a common framework collectively
called global linear models to describe these approaches.

In this paper we show that using features that have been commonly used for
Chinese word segmentation, plus adding a few additional global features, such
as language model features, we can provide state of the art accuracy on several
standard datasets using global linear models. In particular, the accuracy numbers
obtained by our approach do not use any post-processing heuristics. Several types
of ad-hoc post-processing heuristics are commonly used by other systems to
obtain high accuracy on certain data sets but not others. The main contribution
of this paper is to motivate the various choices that need to be made while

* This research was partially supported by NSERC, Canada (RGPIN: 264905) and by
an IBM Faculty Award. Thanks to Michael Collins and Terry Koo for help with the
EG implementation (any errors are our own), to the anonymous reviewers, and to
the SIGHAN bakeoff organizers and participants.

training global linear models. We provide experimental evidence for choices made
that provide state of the art accuracy for Chinese word segmentation.

2 Global Linear Models

Michael Collins [5] provides a common framework called global linear models for
the sequence learning task (also called tagging): Let x be a set of inputs, and
y be a set of possible outputs. In our experiments, x are unsegmented Chinese
sentences, and y are the possible word segmentations for x.

— Each z € x and y € y is mapped to a d-dimensional feature vector @(z,y),
with each dimension being a real number, summarizing partial information
contained in (z,y).

— A weight parameter vector w € R¢ assigns a weight to each feature in @(x,y),
representing the importance of that feature. The value of @(z,y) - w is the
score of (z,y). The higher the score, the more plausible it is that y is the
output for z.

— The function GEN(z) generates the set of possible outputs y for a given z.

Having ®(z,y), w, and GEN (z) specified, we would like to choose the highest
scoring candidate y* from GEN (z) as the most plausible output. That is,

F(s) = argmax ply | zw)
y€ GEN(z)

where F'(z) returns the highest scoring output y* from GEN(z). A conditional
random field (CRF) [4] defines the conditional probability as a linear score for
each candidate y and a global normalization term:

logp(y | 7, w) = P(x,y) - w—1log > exp(®(z,y)-w)
'€ GEN(x)

In our experiments we find that a simpler global linear model that ignores the
normalization term is faster to train and provides comparable accuracy.

F(z) = argmax P(x,y) - w
y€ GEN(z)

For this model, we learn the weight vector from labeled data using the perceptron
algorithm [5]. A global linear model is global is two ways: it uses features that
are defined over the entire sequence, and the parameter estimation methods are
explicitly related to errors over the entire sequence.

3 Feature Templates and Experimental Setup

In this section, we look at the choices to be made in defining the feature vec-
tor @(z,y). In our experiments the feature vector is defined using local feature
templates and global feature templates. For local features, the 14 feature types
from [8] are used, shown in Table la. The local features for the entire sequence
are summed up to provide global features.

word w

word bigram w;wsg

single character word w

space-separated characters c; and cg
character bigram c;ce in any word

word starting with character ¢ with length [

word ending with character ¢ with length [15|sentence confidence score

0| | O O | W N —

first and last characters c; and cg of any word| |16|sentence language model score

©

word w immediately before character ¢ (b)

—
o

character ¢ immediately before word w

—_
—_

starting chars c;, cg for 2 consecutive words

—_
[\

ending chars ¢y, ¢z for 2 consecutive words
13|a word of length [and the previous word w
a word of length [and the next word w

(a)

Table 1: Feature templates for (a) local features and (b) global features

[
e~

In our experiments we also use global features previously used by [9,10] that
are not simply a sum of local features over the sequence. These features cannot
be decomposed into a sequence of local features, which we will henceforth refer
to as global features (the italics are important!), are listed in Table 1b.

Sentence confidence scores are calculated by a model that is also used as the
GEN function for the global linear model (for instance, in our experiments the
sentence confidence score is provided by a baseline character-based CRF tagger
and GEN is the n-best list it produces). Sentence language model scores are
produced using the SRILM [11] toolkit!. They indicate how likely a sentence
can be generated given the training data, and they help capture the usefulness
of features extracted from the training data. We use a trigram language model
trained on the entire training corpus. We normalize the sentence LM probability:
pY/E , where P is the probability-based language model score and L is the length
of the sentence in words (not in characters). Using logs the value is | log(P)/L |.

We explore different methods for learning the weights for these global features®.

We build a baseline system which is a character based tagger using only the
character features from Table 1a. We use the ‘OB’ tagset where each character
is tagged as ‘B’ (first character of multi-character word), or 'I’ (character inside a
multi-character word), or 'O’ (indicating a single character word). The baseline
system is built using the CRF++ toolkit by Taku Kudo?®. It is also used in
our reranking experiments as the source of possible segmentations for the GEN
function in our global linear models.

! http://www.speech.sri.com/projects/srilm/

2 Our global features are different from commonly used “global” features in the liter-
ature, which either enforce consistency in a sequence (e.g. ensuring that the same
word type is labeled consistently in the token sequence) or examine the use of a
feature in the entire training or testing corpus.

3 http://crfpp.sourceforge.net/

4

Inputs: Training Data ((z1,91),. .., (Zm, Ym)); number of iterations T
Initialization: Set w=0,7y=0,0=0
Algorithm:
fort=1,...,7T do
fori=1,...,m do
y;- = argmax D(z;,y) -w

yEn-best list
y? is closest to y; in terms of f-score and y° € n-best list
if y; # 4" then
w = w+ B(zi, ") - B(wi,)

end if
o=0+WwW

end for

end for

Output: Avg. weight parameter vector v = o/(mT)

Fig. 1: Averaged perceptron learning algorithm using an n-best list

The experimental results are reported on datasets from the first and third
SIGHAN bakeoff shared task datasets [1,3]. From the 1st SIGHAN bakeoff we
use the Peking University (PU) dataset. From the 3rd SIGHAN bakeoff we use
the CityU (City University of Hong Kong), the MSRA (Microsoft Research Asia)
and UPUC (University of Pennsylvania and University of Colorado) datasets.
We strictly follow the closed track rules, where no external knowledge is used®.

4 Reranking v.s. beam search

There are two choices for the definition of GEN in a global linear model:
— GEN(z) enumerates all possible segmentations of the input z. In this case,
search is organized either using dynamic programming or using beam search.
— GEN(z) is the n-best output of another auxiliary model and the global linear
model is used as a reranking model.
In this section we compare beam search with reranking across many different
corpora to test the strength and weakness of both methods.

Reranking To produce a reranking system, we produce a 10-fold split of the
training data: in each fold, 90% of the corpus is used for training and 10% is used
to produce an m-best list of candidates. The n-best list is produced using the
character-based CRF tagger described earlier. The true segmentation can now
be compared with the n-best list in order to train using an averaged perceptron
algorithm [5] shown in Figure 1. This system is then used to predict the best
word segmentation from an n-best list for each sentence in the test data.

We used the development set of the UPUC corpus to find a suitable value
for the parameter n, the maximum number of n-best candidates. This oracle
procedure proceeds as follows: 80% of the training corpus is used to train the
CRF model, which is used to produce the n-best outputs for each sentence on
the remaining 20% of the corpus. Then, these n candidates are compared with

4 We do not even use the encoding of the dataset (dates and non-Chinese characters
are used in encoding-specific heuristics to improve performance, we do not do this).

L00

98 —

97 —

96 —

95 q

94 L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

Number of Maximum Candidate

F-score —’—
Fig. 2: F-score on the UPUC development set with different n

the true segmentation, and for each training sentence, the candidate closest to
the truth is chosen as the final output. As we increase the value of n, for some
sentences, its n-best candidate list is more likely to contain a segmentation that
will improve the overall F-score (Figure 2). To balance accuracy and speed, we
choose n = 20 in all our reranking experiments.

We do not use the algorithm in Figure 1 to train the weights for the global
features defined in Table 1b. The sentence confidence score feature weight and
the language model feature weight is chosen to be 15 for the CityU corpus, to
be 15 for the MSRA corpus, and to be 20 for the UPUC corpus. The reason for
this choice is provided in Section 5.

Beam Search Decoding In [8], instead of applying the n-best reranking
method, their word segmentation system uses beam search decoding [12], where
the global features are only those that are the sum of the local features.

In beam search, the decoder generates segmentation candidates incrementally.
It reads one character at a time from the input sentence, and combines it with
each existing candidate in two ways, either appending this new character to
the last word, or considering it as the beginning of a new word. This combina-
tion process generates segmentations exhaustively; that is, for a sentence with k
characters, all 2"~ possible segmentations are generated. In global linear models
which contain a normalization term it is common to use dynamic programming.
However, for mistake-driven training such as the perceptron, beam search is
more effective. We implemented the decoding algorithm following the pseudo-
code described in [8] which is based on the algorithm in [12]. The beam size B
is used to limit the number of candidates preserved after processing each char-
acter. The performance of the beam search system is compared with that of the
n-best reranking system on the PU corpus from the first SIGHAN bakeoff, and
on the CityU, MSRA, UPUC corpora from the third SIGHAN bakeoff (closed
track). In the n-best reranking system, 20 is chosen to be the maximum num-
ber of n-best candidates. Using the approach described in Section 5 the weight
for sentence confidence score and that for language model score are determined

[Corpus|Setting | F [P [R [Riv[Rooy
Avg. perc. with beam search 94.1(94.5|93.6]69.3| 95.1
PU |Avg. perc. with reranking, global & local features|93.1(93.9(92.3|94.2| 61.8
Avg. perc. with reranking, local features 92.2(92.8|91.7|193.4| 62.3
Baseline character based CRF 93.1(94.0(92.3|94.1| 61.5
CRF with subword tagging 91.9(91.7|92.2|194.5| 53.5
Avg. perc. with beam search 96.8196.8/96.8/97.6| 77.8
Avg. perc. with reranking, global & local features [97.1|97.1{97.1{97.9| 78.3
CityU [Avg. perc. with reranking, local features 96.7(96.7/96.6|97.5| 77.4
Baseline character based CRF 95.7(95.7|95.796.5| 78.3
CRF with subword tagging 95.9(95.8/96.0|96.9| 75.2
Avg. perc. with beam search 95.8(96.0/95.6|96.6| 66.2
Avg. perc. with reranking, global & local features|95.8(95.9/95.7{96.9| 62.0
MSRA [Avg. perc. with reranking, local features 95.5(95.6/95.3]96.3| 65.4
Baseline character based CRF 94.7(95.2|94.3]95.3| 66.9
CRF with subword tagging 94.8194.9|94.6]95.7| 64.9
Avg. perc. with beam search 92.6192.0(93.3|95.8| 67.3
Avg. perc. with reranking, global & local features|93.1|92.5/93.8(96.1| 69.4
UPUC|Avg. perc. with reranking, local features 92.5(91.8|93.1|95.5| 68.8
Baseline character based CRF 92.7(92.2|193.1|195.2| 71.4
CRF with subword tagging 91.8(91.0|92.7|95.2| 66.6

Table 2: Performance (in percentage) comparing averaged perceptron with beam search
with reranking. F' is F-score, P is precision, R is recall, Ry is in-vocabulary (words
in training) recall, and Roov is out of vocabulary recall. CRF with subword tagging
is our implementation of [13]. Boldface is statistically significant improvement over all
other methods (see [14] for detailed results).

to be 15 for the CityU and MSRA corpora, 20 for the UPUC corpus, and 40
for the PU corpus. Similarly, using the dev set, the training iterations were set
to 7 for the CityU and MSRA corpora, 9 for the UPUC corpus, and 6 for the
PU corpus. In the beam search method, the beam size was set to be 16 for all
corpora, and the number of iterations was set to be 7, 7 and 9 for the CityU,
MSRA and UPUC corpora, respectively, corresponding to the iteration values
we applied on each corpus in the reranking system. Table 2 shows the compari-
son between the averaged perceptron training using the beam search method v.s.
the reranking method. For each corpus, the bold number represents the highest
F-score. From the result, we see that on the CityU, MSRA and UPUC corpora,
the beam search decoding based system outperforms the reranking using only
local features. However, reranking based with global features is more accurate
than the beam search decoding based system, except on the PU corpus.

For the PU corpus from the first SIGHAN bakeoff, the reranking does worse
than beam search (and no better than the baseline). To see why we examine how
many sentences in the gold standard also appear within the 20-best candidate
list. For each corpus test set, the results are: CityU (88.2%), MSRA (88.3%),
UPUC (68.4%), and PU (54.8%). For the PU test set, almost half of the true
segmentations are not seen in the 20-best list, which seriously affects the rerank-

ing approach. While for the CityU and MSRA corpora, nearly 90% of the gold
standard segmentations appear in the 20-best candidate list. Beam search has
the advantage of not requiring a separate model to produce n-best candidates,
but training and testing are much slower than reranking® and further research is
required to make it competitive with reranking for Chinese word segmentation®.

5 Learning Global Feature Weights

In this section we explore how to learn the weights for those features that are
not simply the sum of local features. These so-called global features have an
important property: they are real numbers that correspond to the quality of the
entire segmentation, and cannot be identified with any portion of it. Algorithm 1
updates features for a segmentation but is restricted to local features collected
over the entire segmentation (see line 6 of Algorithm 1 where the weight vector
w is updated). For this reason, alternative strategies to obtain weights for global
features need to be explored.

Learning Weights from Development Data We use development data to
determine the weight for the sentence confidence score Sc,s and for the language
model score Sy,,,.” In this step, each training corpus is separated into a training
set, which contains 80% of the training corpus, and a development set containing
the remaining 20% of the training corpus. Then, the perceptron algorithm is
applied on the training set with different Sc,; and Sj,, weight values, and for
various number of iterations. The weight values we test include 2, 4, 6, 8, 10,
15, 20, 30, 40, 50, 100 and 200, across a wide range of scales. The reason for
these discrete values is because we are simply looking for a confidence threshold
over which the sum of local features can override global features such as the
confidence score (cf. Figure 3). As we can see, there will be a significant number
of testing scenarios (i.e. 12x12 = 144 testing scenarios) in order to pick the most
suitable weight values for each corpus. To simplify the process, we assume that
the weights for both S,; and Sy, are equal — this assumption is based on the fact
that weights for these global features simply provide an importance factor so only
a threshold value is needed rather than a finely tuned value that interacts with
other feature weights for features based on local feature templates. Figure 3
shows the F-scores on each of the three corpora using different Sc,y and Siy,
weight values with different number of iterations ¢. From the tables, we observe
that when the weight for S.s and S, increases, F-score improves; however, if
the weight for Sc,s and Sy, becomes too large to overrule the effect of weight
learning on local features, F-score suffers. For our experiments, the weight for
Serp and Spy, is chosen to be 15 for the CityU corpus, 15 for the MSRA corpus,
and 20 for the UPUC corpus. Iterations over the development set also allows us

® We added the language model (LM) global feature as part of beam search, but could
not use it in our experiments as training was prohibitively slow. Rescoring the final
output using the LM probability led to lower accuracy.

5 In general, in this paper we are not making general claims about algorithms, but
rather what works and does not work for typical Chinese word segmentation datasets.

" This process is the same for all datasets. Heuristics are tuned per dataset.

" 15203 4050

.

1 2 3 4 5 6 7 8 9 10
Iterations

w2 —f— w=6 - w=10 - w=20 --@ - w=40 A W=100 -

w8 off w=15 - w=30 A W50 —F— w=200 >

123 456 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Iterations

—F— w=200 & w=30 —f— w=5 —---- w=50 -k w=2 fF- w=10 --l-- W=70 --O-- w=90 --@

Iterations

=2 —— w=6 K- w=10 —-M-- w=20 @
w=8 ~f} W=15 --Q-- w=30 A

(c) (d)
Fig. 3: F-scores on the (a) CityU, (b) MSRA, (¢) UPUC development set for the avg.
perceptron algorithm, and (d) UPUC development set for the EG algorithm.

to find the optimal number of iterations of training for the perceptron algorithm
which is then used on the test set.

Learning Weights from Training Data The word segmentation system,
designed by Liang in [15], incorporated and learned the weights for real-valued
mutual information (MI) features by transforming them into alternative forms:

— Scale the values from [0, 00) into some fixed range [a, b], where the smallest
value observed maps to a, and the largest value observed maps to b.

— Apply z-scores instead of the original values. The z-score of value z from
[0,00) is defined as *= where p and o represent the mean and standard
deviation of the distribution of z values.

— Map any value z to a if z < p, the mean value from the distribution of x
values, or to b if x > pu.

We use Liang’s method to learn weights for our two global features during per-
ceptron training, instead of manually fixing their weight using the development
set. We experiment with the transformations on the two global features defined
previously with the UPUC and CityU corpora®. Table 3 provides the perfor-

8 Due to the large number of experimental settings, we do not test on the CityU and
PU corpora due to their size.

lMethod F-score (UPUC corpus)[F—score (CityU corpus)‘

held-out set test set|held-out set test set
Without global features 95.5 92.5 97.3 96.7
Fixed global feature weights 96.0 93.1 97.7 97.1
Threshold at mean to 0,1 95.0 92.0 96.7 96.0
Threshold at mean to -1,1 95.0 92.0 96.6 95.9
Normalize to [0,1] 95.2 92.1 96.8 96.0
Normalize to [-1,1] 95.1 92.0 96.8 95.9
Normalize to [-3,3] 95.1 92.1 96.8 96.0
Z-score 95.4 92.5 97.1 96.3

Table 3: F-scores (in percentage) obtained by using various ways to transform global
feature weights and by updating their weights in averaged perceptron learning. The
experiments are done on the UPUC and CityU corpora.

mance on their development and test sets. Z-scores perform well but do not
out-perform fixing global feature weights using the development set. The likely
reason is that the two global features have different properties than the MI fea-
ture. They do not have shared components across different training sentences
and they describe the entire sentence unlike the MI features.

6 Exponentiated Gradient

In this section, we explore the use of max-margin methods for global linear
models. In many tasks, the use of large margin or max-margin methods provides
better generalization error over unseen data. We would like to know if Chinese
word segmentation can benefit from a max-margin approach. We implement the
batch exponentiated gradient (EG) algorithm [6, 7] with the same feature set as
the perceptron experiments, including the two global features defined previously,
and compare the performance on the UPUC corpus in the reranking setting.”.
In EG, a set of dual variables «; , is assigned to data points x. Specifically, to
every point x; € X, there corresponds a distribution ;4 such that a;, > 0 and
Zy o, = 1. The algorithm attempts to optimize these dual variables «; , for
each 7 separately. In the word segmentation case, x; is a training example, and
o,y is the dual variable corresponding to each possible segmented output y for
z;. EG is also expressed as a global linear model:

F(z) = argmax @(z,y) w
yEGEN (x)

The weight parameter vector w is expressed in terms of the dual variables a; -
W = Z Qg [@(xw y’L) - {p(aj“ y)]
5y

9 Because EG is computationally expensive we test only on UPUC. We obtain F-score
of 93.1% on UPUC (lower than other corpora) so there is room for improvement
using max-margin methods, however the baseline CRF model performs quite well
on UPUC at F-score of 92.7%. This section is about comparing perceptron and EG.

10

Given a training set {(x;,y;)}"™,; and the weight parameter vector w, the margin
on the segmentation candidate y for the i*" training example is defined as the
difference in score between the true segmentation and the candidate y. That is,

My = (x4, y;) - W — P(25,y) - W

is obtained as

. ’
For each dual variable «; 4, a new «; ,
.

’ ai,ye"v”’

o PR L —
2oy i€V

iy
and 7 is the learning rate which is positive and controls the magnitude of the
update. In implementing the batch EG algorithm, during the initialization phase,
the initial values of ¢, are set to be 1/(number of n-best candidates for z;). In
order to get oz;yy, we need to calculate €Viv. When each V in the n-best list is
positively or negatively too large, numerical underflow occurs. To avoid this, V

is normalized:

0 for y =y,

where V; , = { 1— M, fory#y

’

N %yenvi,y/zylvi,yl

—
nY . MViy/ 2, Viyl
Zy a11ye Y

As Dbefore, the weight for
global features is pre-determinedzse+s

using the development set and
is fixed during the learning
process. Considering the dif-
ference in training time be-
tween online update for per-
ceptron learning and batch
update for EG method, the
maximum number of itera-
tions is set to be larger (T
= 25) in the latter case dur-
ing parameter pruning. The
weight for the global features

2e+06

1.5e+06

1le+06

500000

0

-500000

-1e+06

15e+06 |- /

-2e+06

2.5e+06
0

Primal Objective

60
Iterations

80 100

Dual Objective ---

120

are tested with 2, 5, 10, 30,
50, 70, and 90. Figure 3(d)
shows the performance on the
UPUC held-out set with various parameters. We select the number of iterations
to be 22 and the weight for global features to be 90, and apply these parameters
on the UPUC test set. Table 4 lists the resulting performance. Performance of
the EG method with 22 iterations and with the same number of iterations (9
iterations) as the averaged perceptron method is provided, along with the use
of different feature sets. The bold number represents the highest F-score.

From Table 4, we see that the averaged perceptron with global features provides
the highest F-score. Continuing to run the EG algorithm for more iterations (T
= 120) with the weight of global features being fixed at 90, Figure 4 shows
the convergence in terms of the primal and dual objective functions. From the

Fig.4: EG algorithm convergence on UPUC

11

Setting | F [P[R [Riv[Roov]
EG algorithm, global & local features 93.0(92.3|93.7|196.1| 68.2
EG algorithm, local features 90.4(90.6/90.292.2| 69.7
EG algorithm, global & local features, 9 iterations 92.4(91.7|93.1|195.5| 67.6
Avg. perc. global & local features 93.1/92.5/93.8/96.1| 69.4

Table 4: Performance (percentage) of the EG algorithms, compared to the perceptron
learning methods. All are in the reranking setting. Cf. UPUC results in Table 2.

figure, we can see that the algorithm does in fact converge to the maximum
margin solution on this data set. However, at iteration 120, the F-score remains
0.930, which is the same as the F-score produced in the 22nd iteration.

7 Accuracy

In this section, we compare the accuracy we obtain with the best known accuracy
(to our knowledge) on each dataset from the first and third SIGHAN bakeoft [1,
3]. On the PU corpus, we replicate the result in [8] and obtain F' = 0.941 which
is the best accuracy on that dataset. On the UPUC corpus the best result is
obtained by Site 20. They use date and non-Chinese character information in
their features (this depends on the encoding). Plus one local feature they use
is the tone of the character which we do not use. They do not report results
without the date and non-Chinese character features (they created these features
for the training data using clustering). Their overall result using a log-linear
tagger is F' = 0.933 which is better than our result of FF = 0.931. On the
MSRA corpus the best result is obtained by Site 32.1° They use three different
kinds of post-processing: dictionary based heuristics, date specific heuristics, and
knowledge about named entities that is added to the training data. Without
any post-processing, using a log-linear tagger with n-gram features the result
obtained is F' = 0.958 which matches our score of F' = 0.958. On the CityU
corpus, the best result is obtained by Site 15. They build a specialized tagger for
non-Chinese characters using clustering, plus template-based post-processing.
Without these steps the accuracy is F' = 0.966 compared to our score of F' =
0.971. Our system (avg. perceptron with global & local features) is the only one
that consistently obtains good performance across all these datasets except for
the Peking University (PU) dataset!!.

8 Summary

In this paper, we explore several choices in building a Chinese word segmentation
system. We explore the choice between using global features or not, and the
choices involved in training their feature weights. In our experiments we find that
using a development dataset to fix these global feature weights is better than
learning them from data directly. We compare reranking versus the use of full

% Due to lack of space, we omit full references and ask that the reader refer to [1, 3]

11 Testing on all available datasets would result in huge tables, so we report on the
most recent dataset from the 5th SIGHAN, and we report on the 2nd SIGHAN data
only for comparison with [8].

12

beam search decoding, and find that further research is required to make beam
search competitive in all datasets. We explore the choice between max-margin
methods and an averaged perceptron, and find that the averaged perceptron is
typically faster and as accurate for our datasets. We show that our methods lead
to state of the art accuracy and provide a transparent, easy to replicate design
for highly accurate Chinese word segmentation.

References

1.

10.

11.

12.

13.

14.

15.

Sproat, R., Emerson, T.: The 1st international chinese word segmentation bakeoff.
In: Proceedings of the 2nd SIGHAN Workshop on Chinese Language Processing,
Sapporo, Japan, ACL (July 2003) 123-133

Emerson, T.: The 2nd international chinese word segmentation bakeoff. In: Pro-
ceedings of the 4th SIGHAN Workshop on Chinese Language Processing, Jeju
Island, Korea (October 2005) 123-133

Levow, G.A.: The 3rd international chinese language processing bakeoff. In: Pro-
ceedings of the 5th SIGHAN Workshop on Chinese Language Processing, Sydney,
Australia, ACL (July 2006) 108-117

Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In: Proceedings of the 18th
International Conf. on Machine Learning (ICML). (2001) 282-289

Collins, M.: Discriminative training methods for hidden markov models: Theory
and experiments with perceptron algorithms. In: Proceedings of the Empirical
Methods in Natural Language Processing (EMNLP), Philadelphia, PA, USA, ACL
(July 2002) 1-8

Kivinen, J., Warmuth, M.: Exponentiated gradient versus gradient descent for
linear predictors. Technical Report UCSC-CRL-94-16, UC Santa Cruz (1994)
Globerson, A., Koo, T., Carreras, X., Collins, M.: Exponentiated gradient algo-
rithms for log-linear structured prediction. In: ICML. (2007) 305-312

Zhang, Y., Clark, S.: Chinese segmentation with a word-based perceptron algo-
rithm. In: Proceedings of the 45th Annual Meeting of the Association of Compu-
tational Linguistics, Prague, Czech Republic, ACL (June 2007) 840-847

Sproat, R., Gale, W., Shih, C., Chang, N.: A stochastic finite-state word-
segmentation algorithm for chinese. Comput. Linguist. 22(3) (1996) 377-404
Song, D., Sarkar, A.: Training a perceptron with global and local features for
chinese word segmentation. In: Proceedings of the 6th SIGHAN Workshop on
Chinese Language Processing. (2008) 143-146

Stolcke, A.: SRILM — an extensible language modeling toolkit. In: Proceedings of
the ICSLP. Volume 2., Denver, Colorado (2002) 901-904

Collins, M., Roark, B.: Incremental parsing with the perceptron algorithm. In:
Proceedings of the 42nd Meeting of the Association for Computational Linguistics
(ACL’04), Main Volume, Barcelona, Spain (July 2004) 111-118

Zhang, R., Kikui, G., Sumita, E.: Subword-based tagging by conditional random
fields for chinese word segmentation. In: Proceedings of the Human Language
Technology Conference of the NAACL, Companion Volume: Short Papers, New
York City, USA, ACL (June 2006) 193-196

Song, D.: Experimental comparison of discriminative learning approaches for chi-
nese word segmentation. Master’s thesis, Simon Fraser University (2008)

Liang, P.: Semi-supervised learning for natural language. Master’s thesis, Mas-
sachusetts Institute of Technology (2005)

