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Probability and Language

Assign a probability to an input sequence

Given a URL: choosespain.com. What is this website about?

Input Scoring function

choose spain -8.35
chooses pain -9.88
...

...

The Goal

Find a good scoring function for input sequences.
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Scoring Hypotheses in Speech Recognition

From acoustic signal to candidate transcriptions
Hypothesis Score

the station signs are in deep in english -14732
the stations signs are in deep in english -14735
the station signs are in deep into english -14739
the station ’s signs are in deep in english -14740
the station signs are in deep in the english -14741
the station signs are indeed in english -14757
the station ’s signs are indeed in english -14760
the station signs are indians in english -14790
the station signs are indian in english -14799
the stations signs are indians in english -14807
the stations signs are indians and english -14815
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Scoring Hypotheses in Machine Translation

From source language to target language candidates
Hypothesis Score

we must also discuss a vision . -29.63
we must also discuss on a vision . -31.58
it is also discuss a vision . -31.96
we must discuss on greater vision . -36.09
...

...
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Scoring Hypotheses in Decryption

Character substitutions on ciphertext to plaintext candidates
Hypothesis Score

Heopaj, zk ukq swjp pk gjks w oaynap? -93
Urbcnw, mx hxd fjwc cx twxf j bnlanc? -92
Wtdepy, oz jzf hlye ez vyzh l dpncpe? -91
Mjtufo, ep zpv xbou up lopx b tfdsfu? -89
Nkuvgp, fq aqw ycpv vq mpqy c ugetgv? -87
Gdnozi, yj tjp rvio oj fijr v nzxmzo? -86
Czjkve, uf pfl nrek kf befn r jvtivk? -85
Yvfgra, qb lbh jnag gb xabj n frperg? -84
Zwghsb, rc mci kobh hc ybck o gsqfsh? -83
Byijud, te oek mqdj je adem q iushuj? -77
Jgqrcl, bm wms uylr rm ilmu y qcapcr? -76
Listen, do you want to know a secret? -25
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The Goal

▶ Write down a model over sequences of words or letters.

▶ Learn the parameters of the model from data.

▶ Use the model to predict the probability of new sequences.
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Probability: The Basics

▶ Sample space

▶ Event space

▶ Random variable
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Probability distributions

▶ P(X): probability of random variable X having a certain value.
▶ P(X = killer) = 1.05e-05
▶ P(X = app) = 1.19e-05
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Joint probability

▶ P(X,Y): probability that X and Y each have a certain value.
▶ Let Y stand for choice of a word
▶ Let X stand for the choice of a word that occurs before Y
▶ P(X = killer, Y = app) = 1.24e-10

Joint Probability: P(X=value AND Y=value)

▶ Since X=value AND Y=value, the order does not matter

▶ P(X = killer, Y = app) ⇔ P(Y = app, X = killer)

▶ In both cases it is P(X,Y) = P(Y,X) = P(’killer app’)

▶ In NLP, we often use numerical indices to express this:
P(Wi−1 = killer, Wi = app)
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Joint probability

Joint probability table
Wi−1 Wi = app P(Wi−1,Wi )
⟨S⟩ app 1.16e-19
an app 1.76e-08
killer app 1.24e-10
the app 2.68e-07
this app 3.74e-08
your app 2.39e-08

There will be a similar table for each choice of Wi .

Get P(Wi) from P(Wi−1,Wi)

P(Wi = app) =
∑
x

P(Wi−1 = x ,Wi = app) = 1.19e − 05
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Conditional probability

▶ P(Wi | Wi−1): probability that Wi has a certain value after
fixing value of Wi−1.

▶ P(Wi = app | Wi−1 = killer)

▶ P(Wi = app | Wi−1 = the)

Conditional probability from Joint probability

P(Wi | Wi−1) =
P(Wi−1,Wi )

P(Wi−1)

▶ P(killer) = 1.05e-5

▶ P(killer, app) = 1.24e-10

▶ P(app | killer) = 1.18e-5
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Basic Terms

▶ P(e) – a priori probability or just prior

▶ P(f | e) – conditional probability. The chance of f given e

▶ P(e, f ) – joint probability. The chance of e and f both
happening.

▶ If e and f are independent then we can write
P(e, f ) = P(e)× P(f )

▶ If e and f are not independent then we can write
P(e, f ) = P(e)× P(f | e)
P(e, f ) = P(f )× ?
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Basic Terms
▶ Addition of integers:

n∑
i=1

i = 1 + 2 + 3 + . . .+ n

▶ Product of integers:

n∏
i=1

i = 1× 2× 3× . . .× n

▶ Factoring:

n∑
i=1

i × k = k + 2k + 3k + . . .+ nk = k
n∑

i=1

i

▶ Product with constant:
n∏

i=1

i × k = 1k × 2k . . .× nk = kn ×
n∏

i=1

i
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Probability: Axioms

▶ P measures total probability of a set of events

▶ P(∅) = 0

▶ P(all events) = 1

▶ P(X ) ≤ P(Y ) for any X ⊆ Y

▶ P(X ) + P(Y ) = P(X ∪ Y ) provided that X ∩ Y = ∅
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Probability Axioms
▶ All events sum to 1: ∑

e

P(e) = 1

▶ Marginal probability P(f ):

P(f ) =
∑
e

P(e, f )

▶ Conditional probability:∑
e

P(e | f ) =
∑
e

P(e, f )

P(f )
=

1

P(f )

∑
e

P(e, f ) = 1

▶ Computing P(f ) from axioms:

P(f ) =
∑
e

P(e)× P(f | e)
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Probability: The Chain Rule

▶ P(a, b, c, d | e)
▶ We can simplify this using the Chain Rule:

▶ P(a, b, c, d | e) =
P(d | e) · P(c | d , e) · P(b | c , d , e) · P(a | b, c , d , e)

▶ To see why this is possible, recall that P(X | Y ) = p(X ,Y )
p(Y )

▶ p(a,b,c,d,e)
p(e) = p(d,e)

p(e) · p(c,d,e)
p(d,e) · p(b,c,d,e)

p(c,d,e) · p(a,b,c,d,e)
p(b,c,d,e)

▶ We can approximate the probability by removing some
random variables from the context. For example, we can keep
at most two variables to get:

P(a, b, c, d | e) ≈ P(d | e) ·P(c | d , e) ·P(b | c, e) ·P(a | b, e)
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Probability: The Chain Rule

▶ P(e1, e2, . . . , en) = P(e1)× P(e2 | e1)× P(e3 | e1, e2) . . .

P(e1, e2, . . . , en) =
n∏

i=1

P(ei | ei−1, ei−2, . . . , e1)

▶ In NLP, we call:
▶ P(ei ): unigram probability
▶ P(ei | ei−1): bigram probability
▶ P(ei | ei−1, ei−2): trigram probability
▶ P(ei | ei−1, ei−2, . . . , ei−(n−1)): n-gram probability
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Probability: Random Variables and Events

▶ What is y in P(y) ?

▶ Shorthand for value assigned to a random variable Y , e.g.
Y = y

▶ y is an element of some implicit event space: E
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Probability: Random Variables and Events

▶ The marginal probability P(y) can be computed from P(x , y)
as follows:

P(y) =
∑
x∈E

P(x , y)

▶ Finding the value that maximizes the probability value:

x̂ = argmax
x∈E

P(x)
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Log Probability Arithmetic

▶ Practical problem with tiny P(e) numbers: underflow

▶ One solution is to use log probabilities:

log(P(e)) = log(p1 × p2 × . . .× pn)

= log(p1) + log(p2) + . . .+ log(pn)

▶ Note that:
x = exp(log(x))

▶ Also more efficient: addition instead of multiplication
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Log Probability Arithmetic

p log(p)

0.0 −∞
0.1 −3.32
0.2 −2.32
0.3 −1.74
0.4 −1.32
0.5 −1.00
0.6 −0.74
0.7 −0.51
0.8 −0.32
0.9 −0.15
1.0 0.00
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Log Probability Arithmetic

▶ So: (0.5× 0.5× . . . 0.5) = (0.5)n might get too small but
(−1− 1− 1− 1) = −n is manageable

▶ Another useful fact when writing code
(log2 is log to the base 2):

log2(x) =
log10(x)

log10(2)
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Information Theory

▶ Information theory is the use of probability theory to quantify
and measure “information”.

▶ Consider the task of efficiently sending a message. Sender
Alice wants to send several messages to Receiver Bob. Alice
wants to do this as efficiently as possible.

▶ Let’s say that Alice is sending a message where the entire
message is just one character a, e.g. aaaa. . .. In this case we
can save space by simply sending the length of the message
and the single character.
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Information Theory

▶ Now let’s say that Alice is sending a completely random signal
to Bob. If it is random then we cannot exploit anything in the
message to compress it any further.

▶ The expected number of bits it takes to transmit some infinite
set of messages is what is called entropy.

▶ This formulation of entropy by Claude Shannon was adapted
from thermodynamics, converting information into a quantity
that can be measured.

▶ Information theory is built around this notion of message
compression as a way to evaluate the amount of information.
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Expectation

▶ For a probability distribution p

▶ Expectation with respect to p is a weighted average:

Ep[x ] =
x1 · p(x1) + x2 · p(x2) + . . .+ xnp(xn)

p(x1) + p(x2) + . . .+ p(xn)

= x1 · p(x1) + x2 · p(x2) + . . .+ xnp(xn)

=
∑
x∈E

x · p(x)

▶ Example: for a six-sided die the expectation is:

Ep[x ] = 1 · 1
6
+ 2 · 1

6
+ . . .+ 6 · 1

6
= 3.5
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Entropy

▶ For a probability distribution p

▶ Entropy of p is:

H(p) = −
∑
x∈E

p(x) · log2 p(x)

▶ Any base can be used for the log, but base 2 means that
entropy is measured in bits.

▶ What is the expected number of bits with respect to p:

−Ep[log2 p(x)] = H(p)

▶ Entropy answers the question: What is the expected number
of bits needed to transmit messages from event space E ,
where p(x) defines the probability of observing x?
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Perplexity

▶ The value 2H(p) is called the perplexity of a distribution p

▶ Perplexity is the weighted average number of choices a
random variable has to make.

▶ Choosing between 8 equally likely options (H=3) is 23 = 8.
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Relative Entropy

▶ We often wish to determine the divergence of a distribution q
from another distribution p

▶ Let’s say q is the estimate and p is the true probability

▶ We define the divergence from q to p as the relative
entropy: written as D(p∥q)

D(p∥q) = −
∑
x∈E

p(x) log2
q(x)

p(x)

▶ Note that

D(p∥q) = −Ep(x)

[
log2

q(x)

p(x)

]
▶ The relative entropy is also called the Kullback-Leibler

divergence.
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Cross Entropy and Relative Entropy

▶ The relative entropy can be written as the sum of two terms:

D(p∥q) = −
∑
x∈E

p(x) log2
q(x)

p(x)

= −
∑
x

p(x) log2 q(x) +
∑
x

p(x) log2 p(x)

▶ We know that H(p) = −
∑

x p(x) log2 p(x)

▶ Similarly define H(p, q) = −
∑

x p(x) log2 q(x)

D(p∥q) =H(p, q) −H(p)
relative entropy(p, q)=cross entropy(p, q)−entropy(p)

▶ The term H(p, q) is called the cross entropy.
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Cross Entropy and Relative Entropy

▶ H(p, q) ≥ H(p) always.

▶ D(p∥q) ≥ 0 always, and D(p∥q) = 0 iff p = q
▶ D(p∥q) is not a true distance:

▶ It is asymmetric: D(p∥q) ̸= D(q∥p),
▶ It does not obey the triangle inequality:

D(p∥q) ≰ D(p∥r) + D(r∥q)
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Conditional Entropy and Mutual Information

▶ Entropy of a random variable X :

H(X ) = −
∑
x∈E

p(x) log2 p(x)

▶ Conditional Entropy between two random variables X and Y :

H(X | Y ) = −
∑
x ,y∈E

p(x , y) log2 p(x | y)

▶ Mutual Information between two random variables X and Y :

I (X ;Y ) = D(p(x , y)∥p(x)p(y)) =
∑
x

∑
y

p(x , y) log2
p(x , y)

p(x)p(y)
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