
0

SFUNatLangLab

Natural Language Processing

Anoop Sarkar
anoopsarkar.github.io/nlp-class

Simon Fraser University

September 25, 2024

http://anoopsarkar.github.io/nlp-class

1

Natural Language Processing

Anoop Sarkar
anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 1: Probability models of Language

http://anoopsarkar.github.io/nlp-class

2

The Language Modeling problem

Setup

▶ Assume a (finite) vocabulary of words:
V = {killer , crazy , clown}

▶ Use V to construct an infinite set of sentences
V+ = {

clown, killer clown, crazy clown,

crazy killer clown, killer crazy clown,

. . .

}

▶ A sentence is defined as each s ∈ V+

3

The Language Modeling problem

Data
Given a training data set of example sentences s ∈ V+

Language Modeling problem

Estimate a probability model:∑
s∈V+

p(s) = 1.0

▶ p(clown) = 1e-5

▶ p(killer) = 1e-6

▶ p(killer clown) = 1e-12

▶ p(crazy killer clown) = 1e-21

▶ p(crazy killer clown killer) = 1e-110

▶ p(crazy clown killer killer) = 1e-127

Why do we want to do this?

4

Scoring Hypotheses in Speech Recognition

From acoustic signal to candidate transcriptions
Hypothesis Score

the station signs are in deep in english -14732
the stations signs are in deep in english -14735
the station signs are in deep into english -14739
the station ’s signs are in deep in english -14740
the station signs are in deep in the english -14741
the station signs are indeed in english -14757
the station ’s signs are indeed in english -14760
the station signs are indians in english -14790
the station signs are indian in english -14799
the stations signs are indians in english -14807
the stations signs are indians and english -14815

5

Scoring Hypotheses in Machine Translation

From source language to target language candidates
Hypothesis Score

we must also discuss a vision . -29.63
we must also discuss on a vision . -31.58
it is also discuss a vision . -31.96
we must discuss on greater vision . -36.09
...

...

6

Scoring Hypotheses in Decryption

Character substitutions on ciphertext to plaintext candidates
Hypothesis Score

Heopaj, zk ukq swjp pk gjks w oaynap? -93
Urbcnw, mx hxd fjwc cx twxf j bnlanc? -92
Wtdepy, oz jzf hlye ez vyzh l dpncpe? -91
Mjtufo, ep zpv xbou up lopx b tfdsfu? -89
Nkuvgp, fq aqw ycpv vq mpqy c ugetgv? -87
Gdnozi, yj tjp rvio oj fijr v nzxmzo? -86
Czjkve, uf pfl nrek kf befn r jvtivk? -85
Yvfgra, qb lbh jnag gb xabj n frperg? -84
Zwghsb, rc mci kobh hc ybck o gsqfsh? -83
Byijud, te oek mqdj je adem q iushuj? -77
Jgqrcl, bm wms uylr rm ilmu y qcapcr? -76
Listen, do you want to know a secret? -25

7

Scoring Hypotheses in Spelling Correction

Substitute spelling variants to generate hypotheses
Hypothesis Score

... stellar and versatile acress whose combination
of sass and glamour has defined her ...

-18920

... stellar and versatile acres whose combination
of sass and glamour has defined her ...

-10209

... stellar and versatile actress whose combination
of sass and glamour has defined her ...

-9801

8

T9 to English
Grover, King, & Kushler. 1998.
Reduced keyboard disambiguating computer. US Patent 5,818,437

Sequence of numbers to English
Input Hypothesis Score

46 04663 GO HOOD -24
46 04663 GO HOME -10
843 0746453
06678 07678527
0243373 0460843
096753

? ?

9

Probability models of language

Question

▶ Given a finite vocabulary set V
▶ We want to build a probability model P(s) for all s ∈ V+

▶ But we want to consider sentences s of each length ℓ
separately.

▶ Write down a new model over V+ such that P(s | ℓ) is in the
model

▶ And the model should be equal to
∑

s∈V+ P(s).

▶ Write down the model ∑
s∈V+

P(s) = . . .

10

Natural Language Processing

Anoop Sarkar
anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 2: n-grams for Language Modeling

http://anoopsarkar.github.io/nlp-class

11

Language models

n-grams for Language Modeling
Handling Unknown Tokens

Smoothing n-gram Models
Interpolation: Jelinek-Mercer Smoothing
Backoff Smoothing with Discounting

Evaluating Language Models

Event Space for n-gram Models

12

n-gram Models

Google n-gram viewer

13

Learning Language Models

▶ Directly count using a training data set of sentences:
w1, . . . ,wn:

p(w1, . . . ,wn) =
c(w1, . . . ,wn)

N

▶ c is a function that counts how many times each sentence
occurs

▶ N is the sum over all possible c(·) values
▶ Problem: does not generalize to new sentences unseen in the

training data.

▶ What are the chances you will see a sentence: crazy killer

clown crazy killer?

▶ In NLP applications we often need to assign non-zero
probability to previously unseen sentences.

14

Learning Language Models

Apply the Chain Rule: the unigram model

p(w1, . . . ,wn) ≈ p(w1)p(w2) . . . p(wn)

=
∏
i

p(wi)

Big problem with a unigram language model

p(the the the the the the the) > p(we must also discuss a vision .)

15

Learning Language Models

Apply the Chain Rule: the bigram model

p(w1, . . . ,wn) ≈ p(w1)p(w2 | w1) . . . p(wn | wn−1)

= p(w1)
n∏

i=2

p(wi | wi−1)

Better than unigram

p(the the the the the the the) < p(we must also discuss a vision .)

16

Learning Language Models

Apply the Chain Rule: the trigram model

p(w1, . . . ,wn) ≈
p(w1)p(w2 | w1)p(w3 | w1,w2) . . . p(wn | wn−2,wn−1)

p(w1)p(w2 | w1)
n∏

i=3

p(wi | wi−2,wi−1)

Better than bigram, but . . .

p(we must also discuss a vision .) might be zero because we have
not seen p(discuss | must also)

17

Maximum Likelihood Estimate

Using training data to learn a trigram model

▶ Let c(u, v ,w) be the count of the trigram u, v ,w , e.g.

c(crazy , killer , clown). P(u, v ,w) = c(u,v ,w)∑
u,v,w c(u,v ,w)

▶ Let c(u, v) be the count of the bigram u, v , e.g.

c(crazy , killer). P(u, v) = c(u,v)∑
u,v c(u,v)

▶ For any u, v ,w we can compute the conditional probability of
generating w given u, v :

p(w | u, v) = c(u, v ,w)

c(u, v)

▶ For example:

p(clown | crazy , killer) = c(crazy , killer , clown)

c(crazy , killer)

18

Number of Parameters

How many probabilities in each n-gram model

▶ Assume V = {killer, crazy, clown,UNK}

Question

How many unigram probabilities: P(x) for x ∈ V?

4

19

Number of Parameters

How many probabilities in each n-gram model

▶ Assume V = {killer, crazy, clown,UNK}

Question

How many bigram probabilities: P(y |x) for x , y ∈ V?

42 = 16

20

Number of Parameters

How many probabilities in each n-gram model

▶ Assume V = {killer, crazy, clown,UNK}

Question

How many trigram probabilities: P(z |x , y) for x , y , z ∈ V?

43 = 64

21

Number of Parameters

Question

▶ Assume | V | = 50,000 (a realistic vocabulary size for English)
▶ What is the minimum size of training data in tokens?

▶ If you wanted to observe all unigrams at least once.
▶ If you wanted to observe all trigrams at least once.

125,000,000,000,000 (125 Ttokens)

Some trigrams should be zero since they do not occur in the
language, P(the | the, the).
But others are simply unobserved in the training data,
P(idea | colourless, green).

22

Handling tokens in test corpus unseen in training corpus

Assume closed vocabulary

In some situations we can make this assumption, e.g. our
vocabulary is ASCII characters

Interpolate with unknown words distribution

We will call this smoothing. We combine the n-gram probability
with a distribution over unknown words

Punk(w) =
1

Vall

Vall is an estimate of the vocabulary size including unknown words.

Add an <unk> word
Modify the training data L by changing words that appear only
once to the <unk> token. Since this probability can be an
over-estimate we multiply it with a probability Punk(·).

23

Natural Language Processing

Anoop Sarkar
anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 3: Smoothing Probability Models

http://anoopsarkar.github.io/nlp-class

24

Language models

n-grams for Language Modeling
Handling Unknown Tokens

Smoothing n-gram Models
Interpolation: Jelinek-Mercer Smoothing
Backoff Smoothing with Discounting

Evaluating Language Models

Event Space for n-gram Models

25

Interpolation: Jelinek-Mercer Smoothing

PML(wi | wi−1) =
c(wi−1,wi)

c(wi−1)

▶ PJM(wi | wi−1) = λPML(wi | wi−1) + (1− λ)PML(wi)
where, 0 ≤ λ ≤ 1

▶ Jelinek and Mercer (1980) describe an elegant form of this
interpolation:

PJM(ngram) = λPML(ngram) + (1− λ)PJM(n − 1gram)

▶ What about PJM(wi)?
For missing unigrams: PJM(wi) = λPML(wi) + (1− λ) δ

V
0 < δ ≤ 1

26

Interpolation: Finding λ

PJM(ngram) = λPML(ngram) + (1− λ)PJM(n − 1gram)

▶ Deleted Interpolation (Jelinek, Mercer)
compute λ values to minimize cross-entropy on held-out data
which is deleted from the initial set of training data

▶ Improved JM smoothing, a separate λ for each wi−1:

PJM(wi | wi−1) = λ(wi−1)PML(wi | wi−1)+(1− λ(wi−1))PML(wi)

27

Backoff Smoothing with Discounting

▶ Absolute Discounting (aka abs) (Ney, Essen, Kneser)

Pabs(y | x) =

{
c(xy)−D

c(x) if c(xy) > 0

α(x)P(y) otherwise

▶ where α(x) is chosen to make sure that Pabs(y | x) is a
proper probability

α(x) = 1−
∑
y

c(xy)− D

c(x)

28

Backoff Smoothing with Discounting

x , y c(x , y) c(x , y)− D c(x ,y)−D
c(the)

the 48
the,dog 15 14.5 14.5/48
the,woman 11 10.5 10.4/48
the,man 10 9.5 9.5/48
the,park 5 4.5 4.5/48
the,job 2 1.5 1.5/48
the,telescope 1 0.5 0.5/48
the,manual 1 0.5 0.5/48
the,afternoon 1 0.5 0.5/48
the,country 1 0.5 0.5/48
the,street 1 0.5 0.5/48

TOTAL 0.8958

α(the) 0.1042

p(the, student) = 0.1042× p(student)

29

Natural Language Processing

Anoop Sarkar
anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 4: Evaluating Language Models

http://anoopsarkar.github.io/nlp-class

30

Language models

n-grams for Language Modeling
Handling Unknown Tokens

Smoothing n-gram Models
Interpolation: Jelinek-Mercer Smoothing
Backoff Smoothing with Discounting

Evaluating Language Models

Event Space for n-gram Models

31

Evaluating Language Models

▶ So far we’ve seen the probability of a sentence: P(w0, . . . ,wn)

▶ What is the probability of a collection of sentences, that is
what is the probability of an unseen test corpus T

▶ Let T = s0, . . . , sm be a test corpus with sentences si
▶ T is assumed to be separate from the training data used to

train our language model P(s)

▶ What is P(T)?

32

Evaluating Language Models: Independence assumption

▶ T = s0, . . . , sm is the text corpus with sentences s0 through sm
▶ P(T) = P(s0, s1, s2, . . . , sm) – but each sentence is

independent from the other sentences

▶ P(T) = P(s0) · P(s1) · P(s2) · . . . · P(sm) =
∏m

i=0 P(si)

▶ P(si) = P(w
(i)
0 , . . . ,w

(i)
ni) – which can be any n-gram

language model

▶ A language model is better if the value of P(T) is higher for
unseen sentences T , we want to maximize:

P(T) =
m∏
i=0

P(si)

33

Evaluating Language Models: Computing the Average

▶ However, T can be any arbitrary size

▶ P(T) will be lower if T is larger.

▶ Instead of the probability for a given T we can compute the
average probability.

▶ M is the total number of tokens in the test corpus T :

M =
m∑
i=0

length(si)

▶ The average log probability of the test corpus T is:

1

M
log2

m∏
i=0

P(si) =
1

M

m∑
i=0

log2 P(si)

34

Evaluating Language Models: Perplexity

▶ The average log probability of the test corpus T is:

ℓ =
1

M

m∑
i=0

log2 P(si)

▶ Note that ℓ is a negative number

▶ We evaluate a language model using Perplexity which is 2−ℓ

35

Evaluating Language Models

Question

Show that:

2−
1
M

log2
∏m

i=0 P(si) =
1

M
√∏m

i=0 P(si)

36

Evaluating Language Models

Question

What happens to 2−ℓ if any n-gram probability for computing
P(T) is zero?

37

Evaluating Language Models: Perplexity

Progress on the 1B Word Benchmark
Model Params Perplexity Citation

unigram 775K 955 Chelba+ 2013
bigram 1B 137 Chelba+ 2013
trigram 1B 74 Chelba+ 2013
interpolated 5-gram 1.76B 67.6 Chelba+ 2013
10skip-gram+SNM 33B 52.9 Shazeer+ 2014

RNN-256 + 9-grams 20B 58.3 Chelba+ 2013
RNN-1024 + 9-grams 20B 51.3 Chelba+ 2013
Big LSTM+CNN 1.04B 30 Jozefowicz+ 2016
10 LSTMs+10skip-SNM 43B 23.7 Jozefowicz+ 2016

GPT2 1.54B 42.16 Radford+ 2019
Transformer XL 1.04B 21.8 Dai+ 2019
OmniNet 100M 21.5 Tay+ 2021

https://arxiv.org/abs/1312.3005
https://arxiv.org/abs/1312.3005
https://arxiv.org/abs/1312.3005
https://arxiv.org/abs/1312.3005
https://arxiv.org/abs/1412.1454
https://arxiv.org/abs/1312.3005
https://arxiv.org/abs/1312.3005
https://arxiv.org/abs/1602.02410
https://arxiv.org/abs/1602.02410
https://openai.com/research/better-language-models
https://aclanthology.org/P19-1285/
https://arxiv.org/abs/2103.01075

38

Natural Language Processing

Anoop Sarkar
anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 5: Event space in Language Models

http://anoopsarkar.github.io/nlp-class

39

Trigram Models

▶ The trigram model:
P(w1,w2, . . . ,wn) =
P(w1)× P(w2 | w1)× P(w3 | w1,w2)× P(w4 | w2,w3)×
. . .P(wi | wi−2,wi−1) . . .× P(wn | wn−2, . . . ,wn−1)

▶ Notice that the length of the sentence n is variable

▶ What is the event space?

40

The stop symbol

▶ Let V = {a, b} and the language L be V∗

▶ Consider a unigram model: P(a) = P(b) = 0.5

▶ So strings in this language L are:

a stop 0.5

b stop 0.5

aa stop 0.52

bb stop 0.52

...

▶ The sum over all strings in L should be equal to 1:∑
w∈L

P(w) = 1

▶ But P(a) + P(b) + P(aa) + P(bb) = 1.5 !!

41

The stop symbol

▶ What went wrong?
We need to model variable length sequences

▶ Add an explicit probability for the stopsymbol:

P(a) = P(b) = 0.25

P(stop) = 0.5

▶ P(stop) = 0.5, P(a stop) = P(b stop) = 0.25× 0.5 = 0.125,
P(aa stop) = 0.252 × 0.5 = 0.03125 (now the sum is no
longer greater than one)

42

The stop symbol

▶ With this new stop symbol we can show that
∑

w P(w) = 1
Notice that the probability of any sequence of length n is
0.25n × 0.5
Also there are 2n sequences of length n∑

w

P(w) =

∞∑
n=0

2n × 0.25n × 0.5

∞∑
n=0

0.5n × 0.5 =
∞∑
n=0

0.5n+1

∞∑
n=1

0.5n = 1

43

The stop symbol

▶ With this new stop symbol we can show that
∑

w P(w) = 1
Using ps = P(stop) the probability of any sequence of length
n is p(n) = p(w1, . . . ,wn−1)× ps(wn)

∑
w

P(w) =
∞∑
n=0

p(n)
∑

w1,...,wn

p(w1, . . . ,wn)

=
∞∑
n=0

p(n)
∑

w1,...,wn

n∏
i=0

p(wi)

∑
w1,...,wn

∏
i

p(wi) =∑
w1

∑
w2

. . .
∑
wn

p(w1)p(w2) . . . p(wn) = 1

44

The stop symbol

∑
w1

∑
w2

. . .
∑
wn

p(w1)p(w2) . . . p(wn) = 1

∞∑
n=0

p(n) =
∞∑
n=0

ps(1− ps)
n

= ps

∞∑
n=0

(1− ps)
n

= ps
1

1− (1− ps)
= ps

1

ps
= 1

45

Acknowledgements

Many slides borrowed or inspired from lecture notes by Michael
Collins, Chris Dyer, Kevin Knight, Chris Manning, Philipp Koehn,
Adam Lopez, Graham Neubig, Richard Socher and Luke
Zettlemoyer from their NLP course materials.

All mistakes are my own.

A big thank you to all the students who read through these notes
and helped me improve them.

	Language models
	n-grams for Language Modeling
	Handling Unknown Tokens

	Smoothing n-gram Models
	Interpolation: Jelinek-Mercer Smoothing
	Backoff Smoothing with Discounting

	Evaluating Language Models
	Event Space for n-gram Models
	Acknowledgements

