
0

SFUNatLangLab

Natural Language Processing

Anoop Sarkar
anoopsarkar.github.io/nlp-class

Simon Fraser University

October 5, 2023

http://anoopsarkar.github.io/nlp-class


1

Natural Language Processing

Anoop Sarkar
anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 1: Linear models for Tagging

http://anoopsarkar.github.io/nlp-class


2

Tagging tasks in NLP

Log-linear models for Tagging



3

Tagging Tasks

Tagged Sequences

a b e e a f h j ⇒ a/Y b/Z e/Y e/Y a/Z f/X h/Z j/Y

Example 1: Part-of-speech tagging

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV
topping/V forecasts/N on/P Wall/N Street/N ,/, as/P
their/POSS CEO/N Alan/N Mulally/N announced/V first/ADJ
quarter/N results/N ./.

Example 2: Named Entity Recognition

Profits/O soared/O at/O Boeing/B-CO Co./I-CO ,/O easily/O
topping/O forecasts/O on/O Wall/B-LOC Street/I-LOC ,/O as/O
their/O CEO/O Alan/B-PER Mulally/I-PER announced/O first/O
quarter/O results/O ./O



4

Notation for Tagging Tasks

▶ Set of possible input words: V
▶ Set of possible tags: T
▶ Word sequence: x[1:n] = [x1, . . . , xn]

▶ Tag sequence: t[1:n] = [t1, . . . , tn]

▶ Training data is N tagged sentences, the i th sentence has
length ni :

(x
(i)
[1:n], t

(i)
[1:n]) for i = 1, . . . , n



5

Independence Assumptions for Tagging

Chain Rule

P(t[1:n] | x[1:n]) =
n∏

j=1

P(tj | tj−1, . . . , t1, x[1:n], j)

Make independence assumptions

P(t[1:n] | x[1:n]) ≈
n∏

j=1

P(tj | tj−1, x[1:n], j)

j is the word being tagged.

We model the conditional probability directly: no Bayes Rule here.

Questions

▶ Split up P(tj | tj−1, x[1:n], j) into parameters?

▶ How to find argmaxt[1:n] P(t[1:n] | x[1:n])?



6

Tagging tasks in NLP

Log-linear models for Tagging



7

Representation: finding the right parameters

Problem: Predict ?? using context, P(?? | context)
Profits/N soared/V at/P Boeing/?? Co. , easily topping forecasts
on Wall Street , as their CEO Alan Mulally announced first quarter
results .

Representation: history

▶ A history is a 3-tuple: (t−1, x[1:n], i)

▶ t−1 is the previous tag (we are assuming a bigram model)

▶ x[1:n] are the n words in the input

▶ i is the index of the word being tagged
▶ For example, for x4 = Boeing:

▶ t−1 = P
▶ x[1:n] = (Profits, soared, ..., results, .)
▶ i = 4



8

Feature-vectors over history-tag pairs

Take a history, tag pair (h, t)

fk(h, t) for k = 1, . . . ,m are feature functions representing the
tagging decision.

Example: Part-of-speech tagging [Ratnaparkhi 1996]

f100(h, t) =

{
1 if current word xi is Boeing and t = N

0 otherwise

f101(h, t) =

{
1 if t−1 is P and t = N

0 otherwise



9

Log linear model for Tagging
▶ Let there be m features, fk(x, y) for k = 1, . . . ,m

▶ x = x[1:n] and y = t[1:n]
▶ Define a parameter vector w ∈ Rm

▶ Each (x, y) pair is mapped to score:

s(x, y) =
∑
k

wk · fk(x, y)

▶ Using inner product notation:

w · f(x, y) =
∑
k

wk · fk(x, y)

s(x, y) = w · f(x, y)

▶ To get a probability from the score: Renormalize!

Pr(y | x,w) = exp (s(x, y))∑
y’ exp (s(x, y’))



10

Feature functions for Tagging

Problem
▶ We have defined a log-linear model using feature functions:

f(x,y)

▶ We have defined parameters using a history h so feature
functions are: f(h, t)



11

Locally normalized log-linear taggers

Conditional Distribution over history, tag pair (h, t)

log Pr(t | h) = w · f(h, t)− log
∑
t′

exp
(
w · f(h, t ′)

)
▶ f(h, t) is a vector of feature functions

▶ w is the weight vector

Local normalization for tagging

▶ Word sequence: x[1:n] and tag sequence: t[1:n]
▶ Histories hi = (ti−1, x[1:n], i)

log Pr(t[1:n] | x[1:n]) =
n∑

i=1

log Pr(ti | hi )



12

Globally normalized log-linear taggers

Global feature function Φ(x, y)

▶ Word sequence: x = x[1:n] and tag sequence: y = t[1:n]
▶ From local histories hi = (ti−1, x[1:n], i) to global Φ values:

Φk(x[1:n], t[1:n]) =
n∑

i=1

fk(hi , ti )

▶ Φ(x, y) = (Φ1,Φ2, . . . ,Φm) is a global feature vector

▶ w is the weight vector for Φ

Global normalization for tagging

log Pr(y | x,w) = w ·Φ(x, y)− log
∑
y’

exp (w ·Φ(x, y’))



13

Conditional Random Field

Global normalization for tagging

log Pr(y | x,w) = w ·Φ(x, y)− log
∑
y’

exp (w ·Φ(x, y’))

▶ This model is also called a conditional random field (CRF)

Algorithms for training and decoding

▶ Global normalization could be expensive: requires sum over
exponentially many terms y’

▶ Finding argmaxy log Pr(y | x) can be accomplished using the
Viterbi algorithm.

▶ Training: finding the weight vector w can be done using a
variant of the Forward algorithm.



14

Acknowledgements

Many slides borrowed or inspired from lecture notes by Michael
Collins, Chris Dyer, Kevin Knight, Chris Manning, Philipp Koehn,
Adam Lopez, Graham Neubig, Richard Socher and Luke
Zettlemoyer from their NLP course materials.

All mistakes are my own.

A big thank you to all the students who read through these notes
and helped me improve them.


	Tagging tasks in NLP
	Log-linear models for Tagging
	Acknowledgements

