
0

SFUNatLangLab

Natural Language Processing

Anoop Sarkar
anoopsarkar.github.io/nlp-class

Simon Fraser University

October 5, 2023

http://anoopsarkar.github.io/nlp-class


1

Natural Language Processing

Anoop Sarkar
anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 1: Linear models for Tagging

http://anoopsarkar.github.io/nlp-class


2

Tagging tasks in NLP

Log-linear models for Tagging



3

Tagging Tasks

Tagged Sequences

a b e e a f h j ⇒ a/Y b/Z e/Y e/Y a/Z f/X h/Z j/Y

Example 1: Part-of-speech tagging

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV
topping/V forecasts/N on/P Wall/N Street/N ,/, as/P
their/POSS CEO/N Alan/N Mulally/N announced/V first/ADJ
quarter/N results/N ./.

Example 2: Named Entity Recognition

Profits/O soared/O at/O Boeing/B-CO Co./I-CO ,/O easily/O
topping/O forecasts/O on/O Wall/B-LOC Street/I-LOC ,/O as/O
their/O CEO/O Alan/B-PER Mulally/I-PER announced/O first/O
quarter/O results/O ./O
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Notation for Tagging Tasks

▶ Set of possible input words: V
▶ Set of possible tags: T
▶ Word sequence: x[1:n] = [x1, . . . , xn]

▶ Tag sequence: t[1:n] = [t1, . . . , tn]

▶ Training data is N tagged sentences, the i th sentence has
length ni :

(x
(i)
[1:n], t

(i)
[1:n]) for i = 1, . . . , n
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Independence Assumptions for Tagging

Chain Rule

P(t[1:n] | x[1:n]) =
n∏

j=1

P(tj | tj−1, . . . , t1, x[1:n], j)

Make independence assumptions

P(t[1:n] | x[1:n]) ≈
n∏

j=1

P(tj | tj−1, x[1:n], j)

j is the word being tagged.

We model the conditional probability directly: no Bayes Rule here.

Questions

▶ Split up P(tj | tj−1, x[1:n], j) into parameters?

▶ How to find argmaxt[1:n] P(t[1:n] | x[1:n])?



6

Tagging tasks in NLP

Log-linear models for Tagging



7

Representation: finding the right parameters

Problem: Predict ?? using context, P(?? | context)
Profits/N soared/V at/P Boeing/?? Co. , easily topping forecasts
on Wall Street , as their CEO Alan Mulally announced first quarter
results .

Representation: history

▶ A history is a 3-tuple: (t−1, x[1:n], i)

▶ t−1 is the previous tag (we are assuming a bigram model)

▶ x[1:n] are the n words in the input

▶ i is the index of the word being tagged
▶ For example, for x4 = Boeing:

▶ t−1 = P
▶ x[1:n] = (Profits, soared, ..., results, .)
▶ i = 4
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Feature-vectors over history-tag pairs

Take a history, tag pair (h, t)

fk(h, t) for k = 1, . . . ,m are feature functions representing the
tagging decision.

Example: Part-of-speech tagging [Ratnaparkhi 1996]

f100(h, t) =

{
1 if current word xi is Boeing and t = N

0 otherwise

f101(h, t) =

{
1 if t−1 is P and t = N

0 otherwise
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Log linear model for Tagging
▶ Let there be m features, fk(x, y) for k = 1, . . . ,m

▶ x = x[1:n] and y = t[1:n]
▶ Define a parameter vector w ∈ Rm

▶ Each (x, y) pair is mapped to score:

s(x, y) =
∑
k

wk · fk(x, y)

▶ Using inner product notation:

w · f(x, y) =
∑
k

wk · fk(x, y)

s(x, y) = w · f(x, y)

▶ To get a probability from the score: Renormalize!

Pr(y | x,w) = exp (s(x, y))∑
y’ exp (s(x, y’))
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Feature functions for Tagging

Problem
▶ We have defined a log-linear model using feature functions:

f(x,y)

▶ We have defined parameters using a history h so feature
functions are: f(h, t)
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Locally normalized log-linear taggers

Conditional Distribution over history, tag pair (h, t)

log Pr(t | h) = w · f(h, t)− log
∑
t′

exp
(
w · f(h, t ′)

)
▶ f(h, t) is a vector of feature functions

▶ w is the weight vector

Local normalization for tagging

▶ Word sequence: x[1:n] and tag sequence: t[1:n]
▶ Histories hi = (ti−1, x[1:n], i)

log Pr(t[1:n] | x[1:n]) =
n∑

i=1

log Pr(ti | hi )
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Globally normalized log-linear taggers

Global feature function Φ(x, y)

▶ Word sequence: x = x[1:n] and tag sequence: y = t[1:n]
▶ From local histories hi = (ti−1, x[1:n], i) to global Φ values:

Φk(x[1:n], t[1:n]) =
n∑

i=1

fk(hi , ti )

▶ Φ(x, y) = (Φ1,Φ2, . . . ,Φm) is a global feature vector

▶ w is the weight vector for Φ

Global normalization for tagging

log Pr(y | x,w) = w ·Φ(x, y)− log
∑
y’

exp (w ·Φ(x, y’))
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Conditional Random Field

Global normalization for tagging

log Pr(y | x,w) = w ·Φ(x, y)− log
∑
y’

exp (w ·Φ(x, y’))

▶ This model is also called a conditional random field (CRF)

Algorithms for training and decoding

▶ Global normalization could be expensive: requires sum over
exponentially many terms y’

▶ Finding argmaxy log Pr(y | x) can be accomplished using the
Viterbi algorithm.

▶ Training: finding the weight vector w can be done using a
variant of the Forward algorithm.
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