NLP: Fall 2024

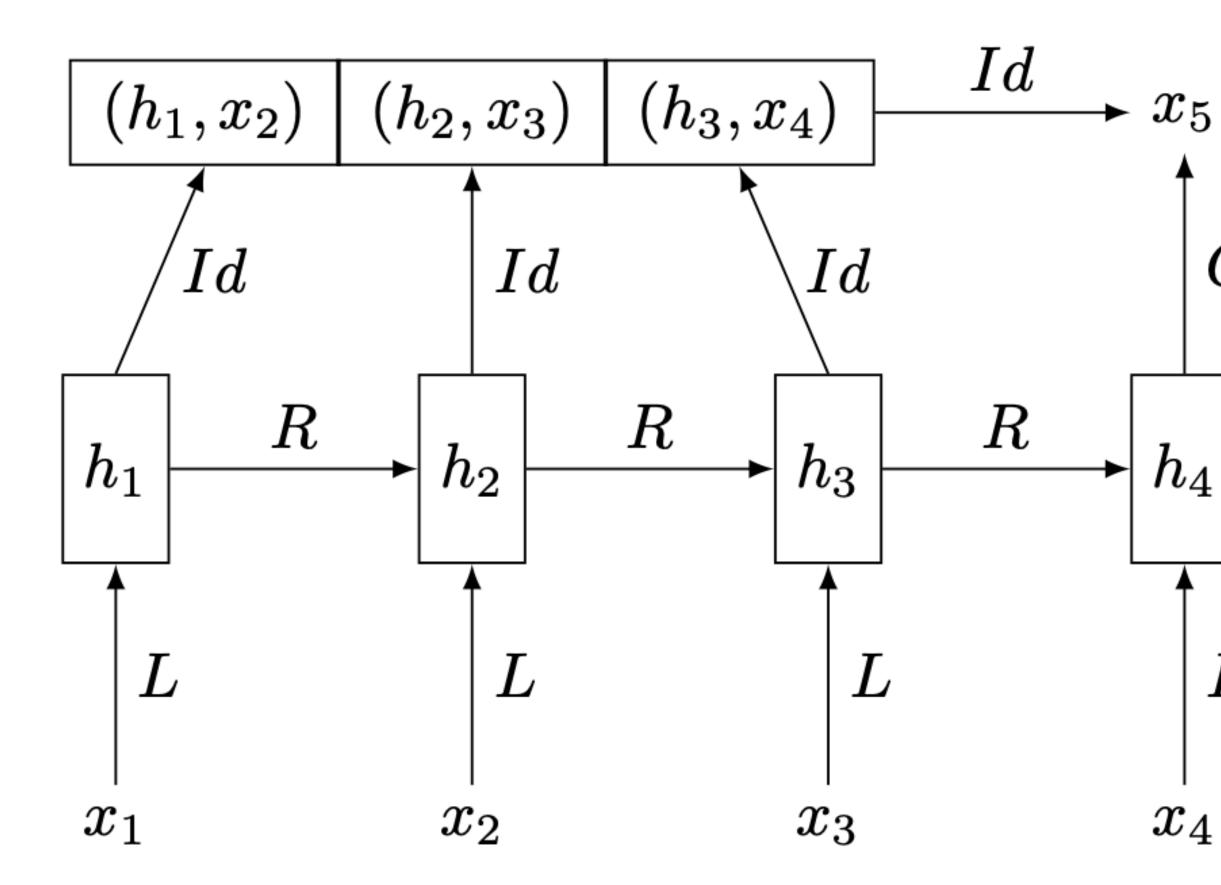
Anoop Sarkar

KNN LM

IMPROVING NEURAL LANGUAGE MODELS WITH A CONTINUOUS CACHE

Edouard Grave, Armand Joulin, Nicolas Usunier Facebook AI Research {egrave,ajoulin,usunier}@fb.com

https://arxiv.org/abs/1612.04426



t-1 $p_{cache}(w \mid h_{1..t}, x_{1..t}) \propto \sum \mathbb{1}_{\{w=x_{i+1}\}} \exp(\theta h_t^{\top} h_i)$ i=1

O

L

Figure 1: The neural cache stores the previous hidden states in memory cells. They are then used as keys to retrieve their corresponding word, that is the next word. There is no transformation applied to the storage during writing and reading.

GENERALIZATION THROUGH MEMORIZATION: NEAREST NEIGHBOR LANGUAGE MODELS

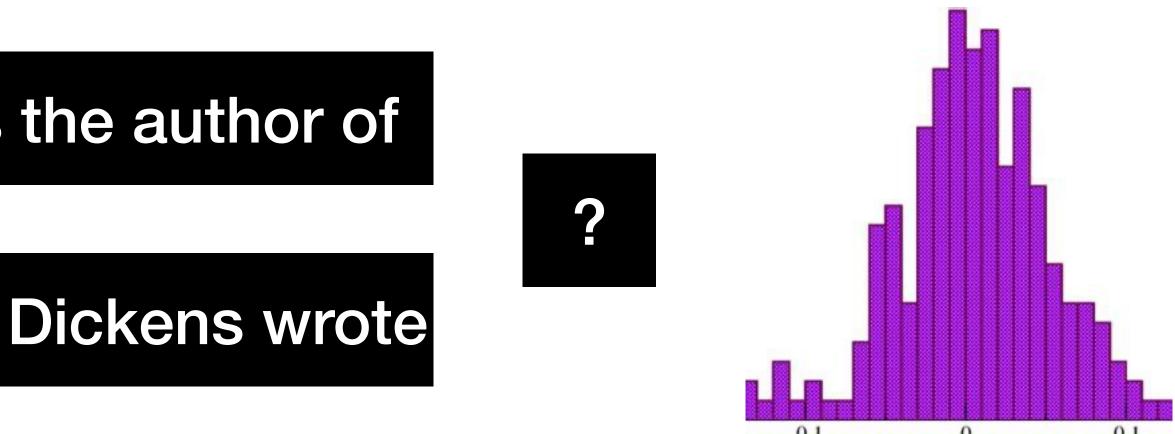
Urvashi Khandelwal[†], Omer Levy[‡], Dan Jurafsky[†], Luke Zettlemoyer[‡] & Mike Lewis[‡] [†]Stanford University [‡]Facebook AI Research {urvashik,jurafsky}@stanford.edu
{omerlevy,lsz,mikelewis}@fb.com

https://openreview.net/forum?id=HklBjCEKvH

Learning representations is easier than prediction

Dickens is the author of

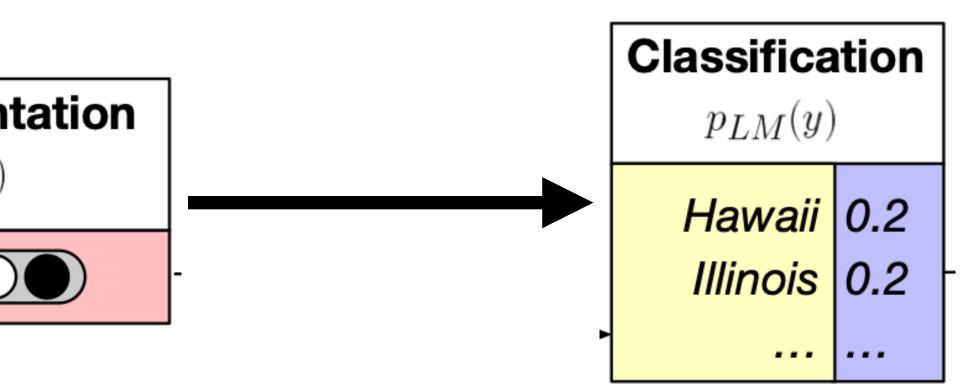
distribution is identical over the vocabulary.



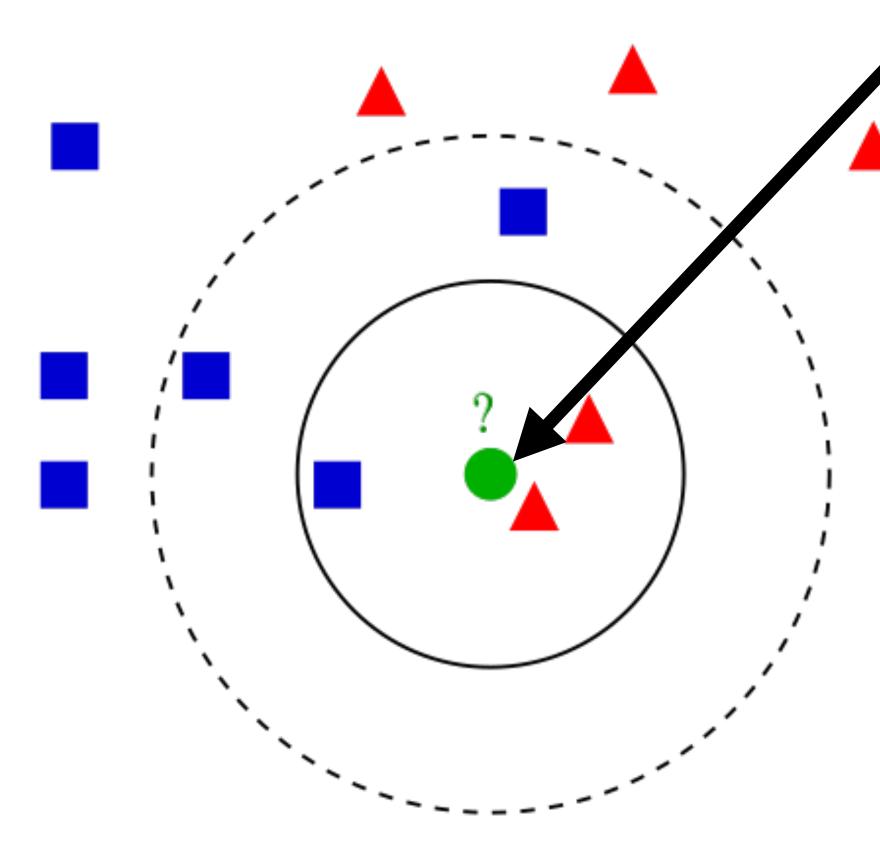
Even if you cannot predict the next token, you can predict that the

Standard LM prediction

Test Context X	Target	Represent $q = f(x)$
Obama's birthplace is	?	



Nearest Neighbour k neighbours in vector space

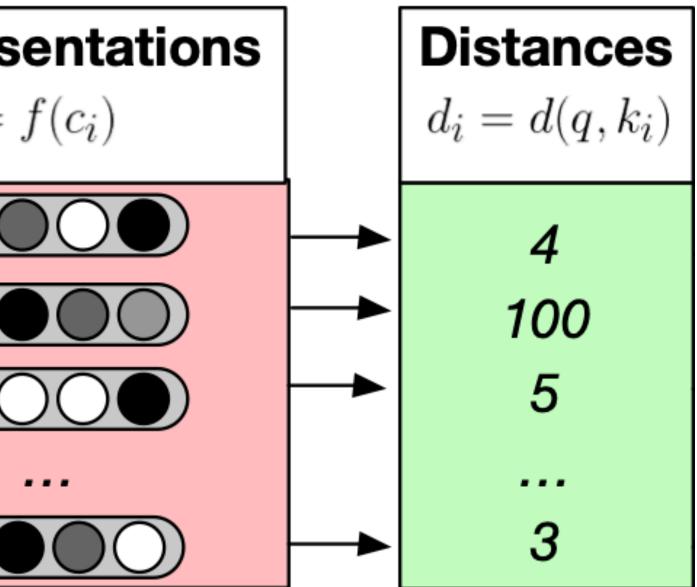


- The query vector is compared to other data vectors in the same vector space.
 - Choose the class that has the most representatives inside the search perimeter.
 - The search perimeter is determined by the cosine similarity of the query vector to the vectors stored in a kNN storage
 - Efficient disk based kNN retrieval for very large sets of vectors is available: SCaNN, FAISS, annoy, etc.

kNN LM prediction (step 1)

Test Context	Target	$\begin{array}{c} \textbf{Representati} \\ q = f(x) \end{array}$
Obama's birthplace is	?	

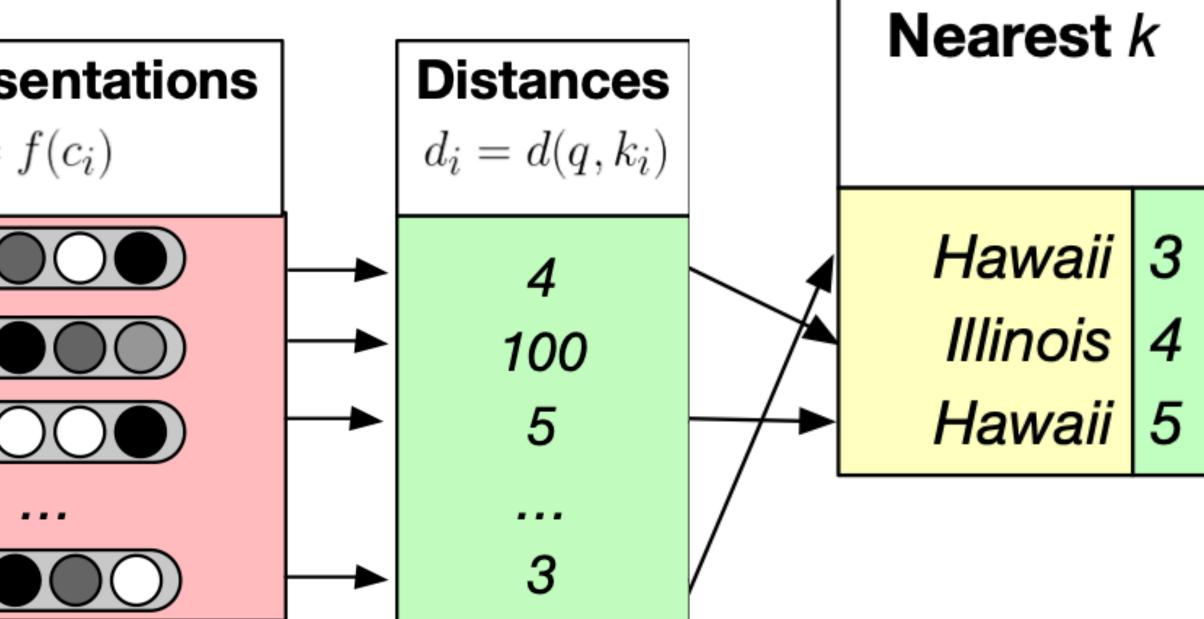
Training Contexts	Targets	Repres
c_i	v_i	$k_i = $
Obama was senator for	Illinois	
Barack is married to	Michelle	
Obama was born in	Hawaii	
•••		
Obama is a native of	Hawaii	



kNN LM prediction (step 2)

Test Context	Target	$\begin{array}{c} \textbf{Representati} \\ q = f(x) \end{array}$
Obama's birthplace is	?	

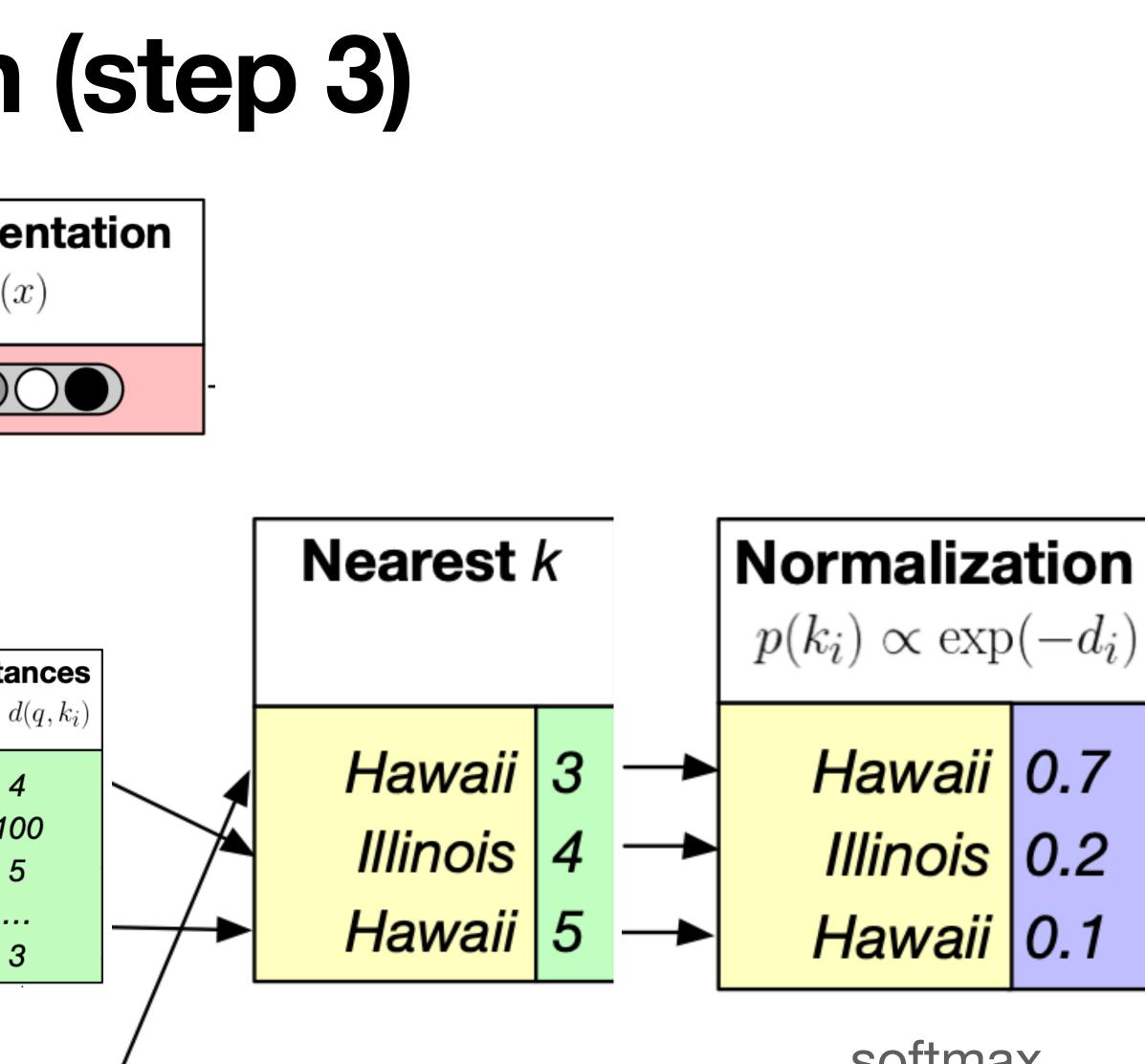
Training Contexts	Targets	Repres
c_i	v_i	$k_i = $
Obama was senator for	Illinois	
Barack is married to	Michelle	
Obama was born in	Hawaii	
•••		
Obama is a native of	Hawaii	



kNN LM prediction (step 3)

Test Context	Target	Representati $q = f(x)$
Obama's birthplace is	?	

Training Contexts	Targets	Representations	Distances
c_i	v_i	$k_i = f(c_i)$	$d_i = d(q, k_i)$
Obama was senator for	Illinois		 4
Barack is married to	Michelle		 100
Obama was born in	Hawaii		 5
Obama is a native of	Hawaii		 3

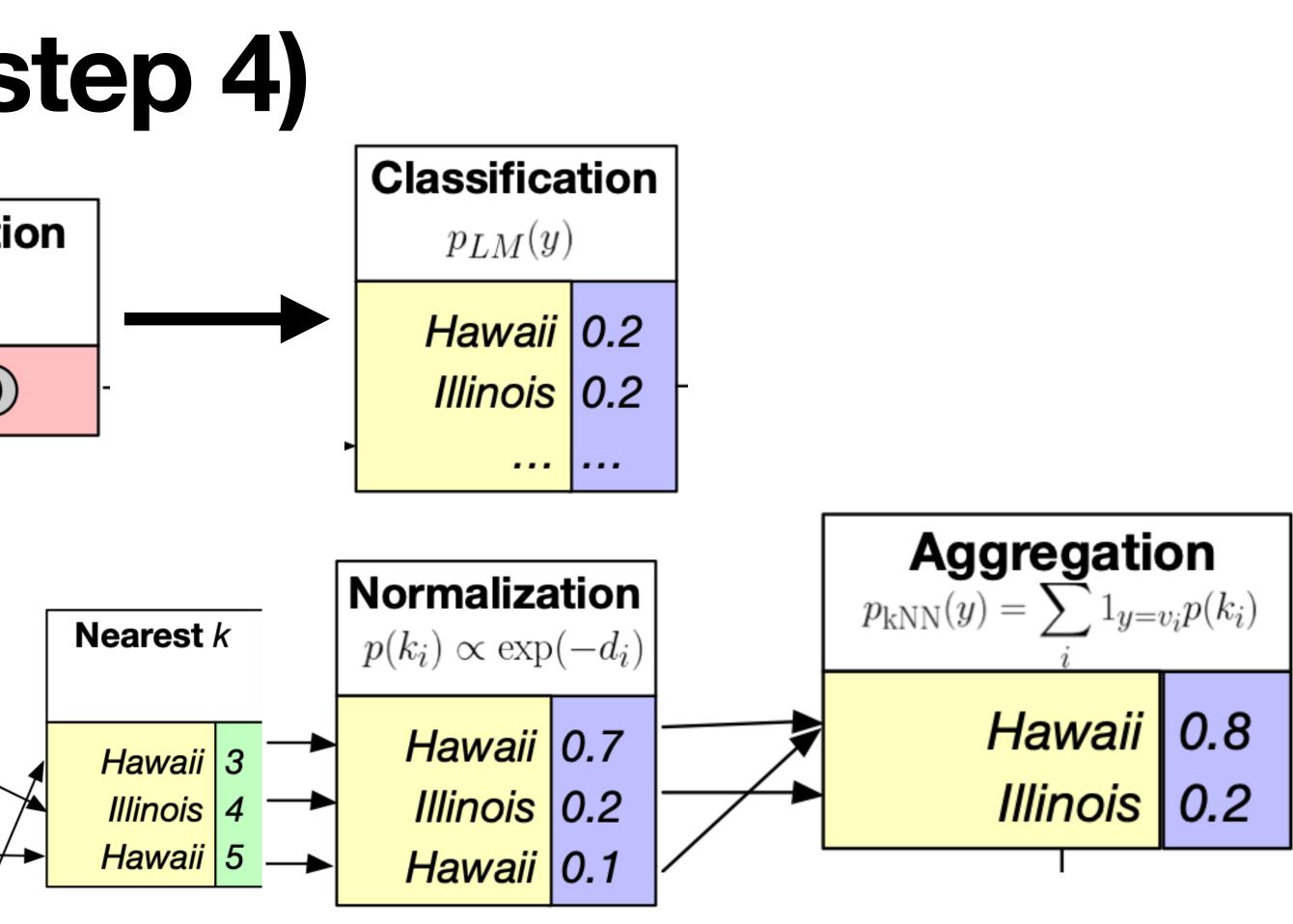


softmax

kNN LM prediction (step 4)

Test Context	Target	$\begin{array}{c} \textbf{Representati} \\ q = f(x) \end{array}$
Obama's birthplace is	?	

Training Contexts	Targets	Representations	Distances	
c_i	v_i	$k_i = f(c_i)$	$d_i = d(q, k_i)$	
Obama was senator for	Illinois		 4	
Barack is married to			 100	
Obama was born in	Hawaii		 5	7
Obama is a native of	Hawaii		3	/

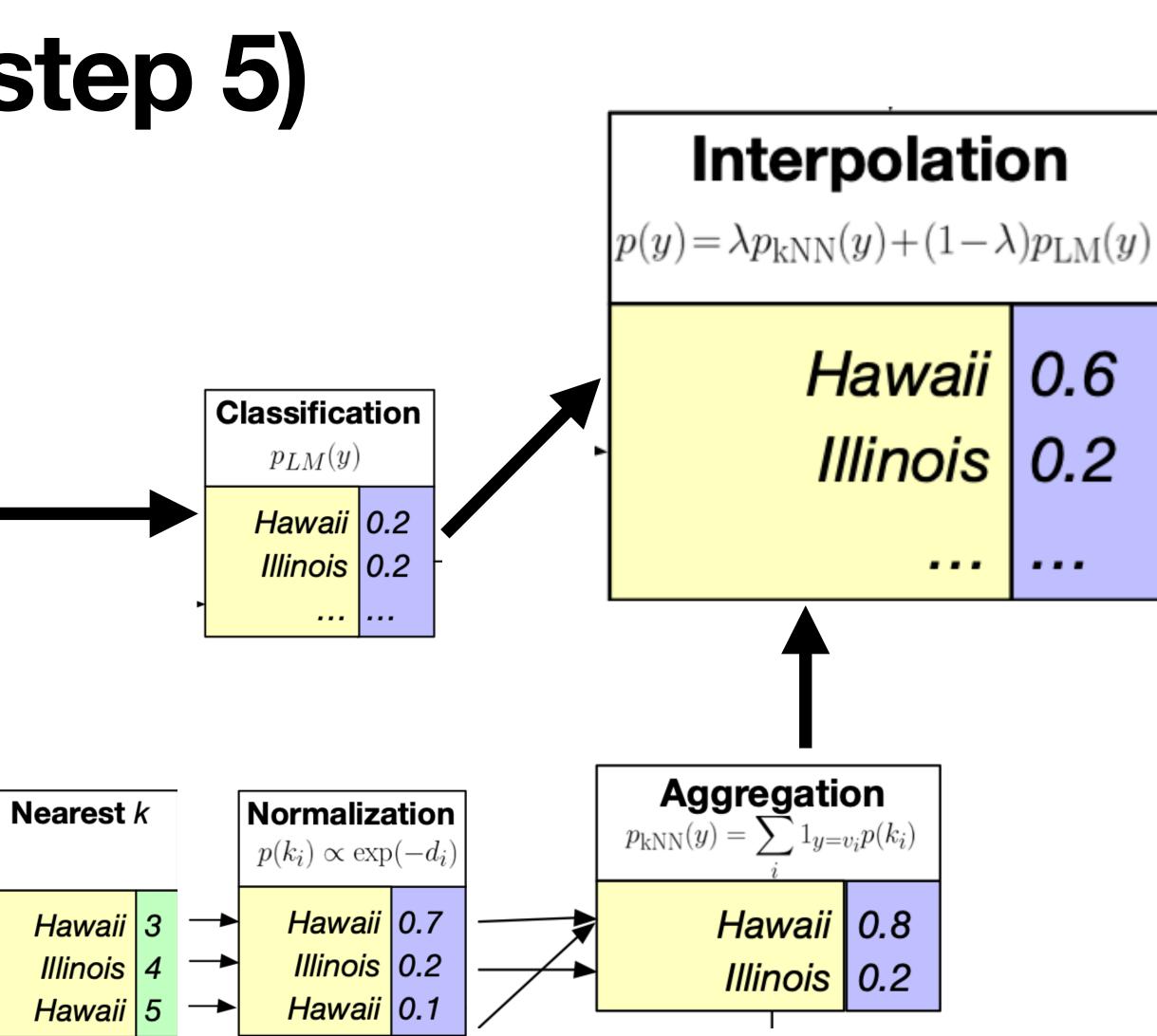


 $P_{\mathsf{kNN}}(y) \approx \sum_{k_i, v_i \in \mathcal{N}} 1_{y=v_i} \exp(-d(k_i, f(x)))$

kNN LM prediction (step 5) $p(y) = \lambda P_{\text{kNN}}(y) + (1 - \lambda)P_{\text{LM}}(y)$

Test Context	Target	Representation
x		q = f(x)
Obama's birthplace is	?	

Training Contexts	Targets	Representations		Distances		'
c_i	v_i	$k_i = f(c_i)$		$d_i = d(q, k_i)$		
Obama was senator for	Illinois		┝─►	4		
Barack is married to	Michelle		┝╼╸	100		
Obama was born in	Hawaii			5		
Obama is a native of	Hawaii		┝╼╸	3	/	



Best representation for f(c)?

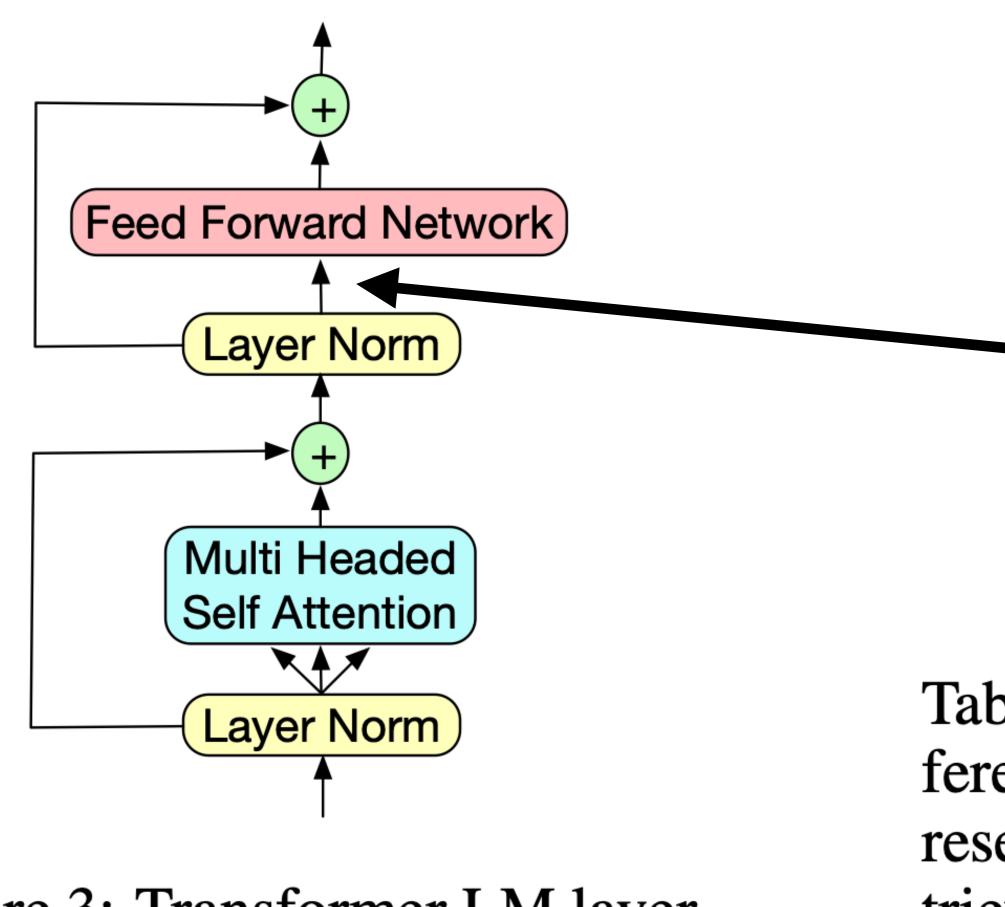


Figure 3: Transformer LM layer.

Output of FFN focuses on prediction; attention output focuses on representation

Кеу Туре	Dev ppl. (↓)
No datastore	17.96
Model output	17.07
Model output layer normalized	17.01
FFN input after layer norm	16.06
FFN input before layer norm	17.06
MHSA input after layer norm	16.76
MHSA input before layer norm	17.14

Table 5: WIKITEXT-103 validation results using different states from the final layer of the LM as the representation function $f(\cdot)$ for keys and queries. We retrieve k=1024 neighbors and λ is tuned for each.

Model

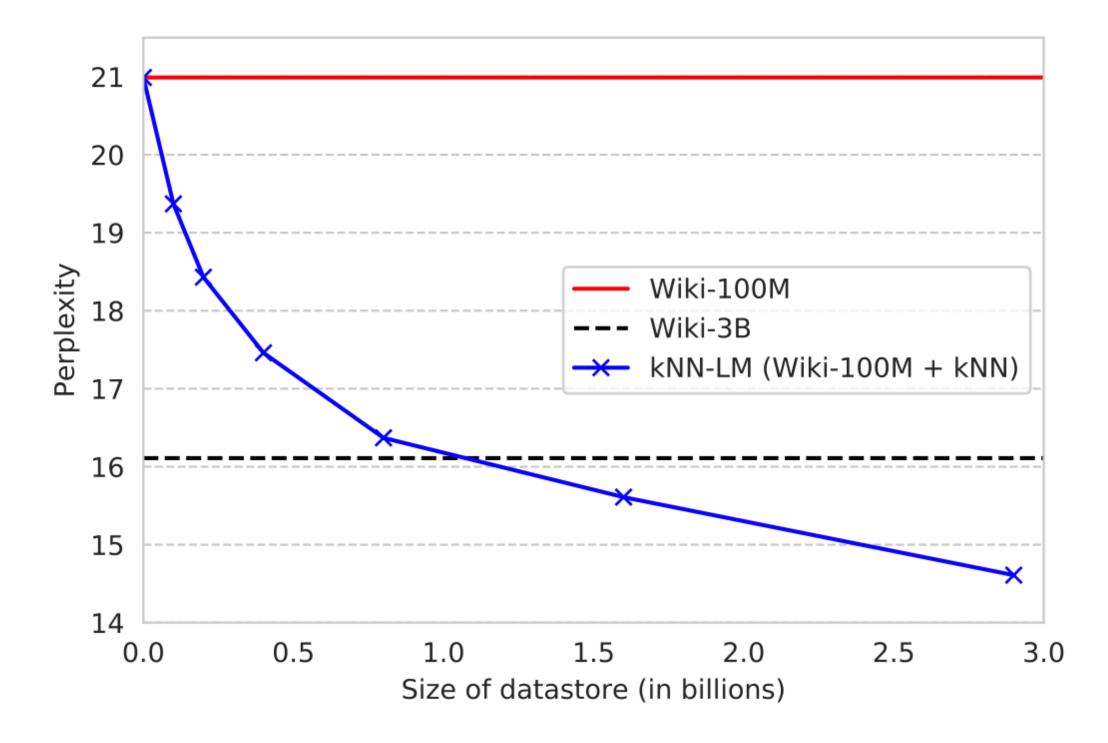
Baevski & Auli (2019) +Transformer-XL (Dai et al., 2019) +Phrase Induction (Luo et al., 2019)

Base LM (Baevski & Auli, 2019) +kNN-LM

+Continuous Cache (Grave et al., 2017c) +kNN-LM + Continuous Cache

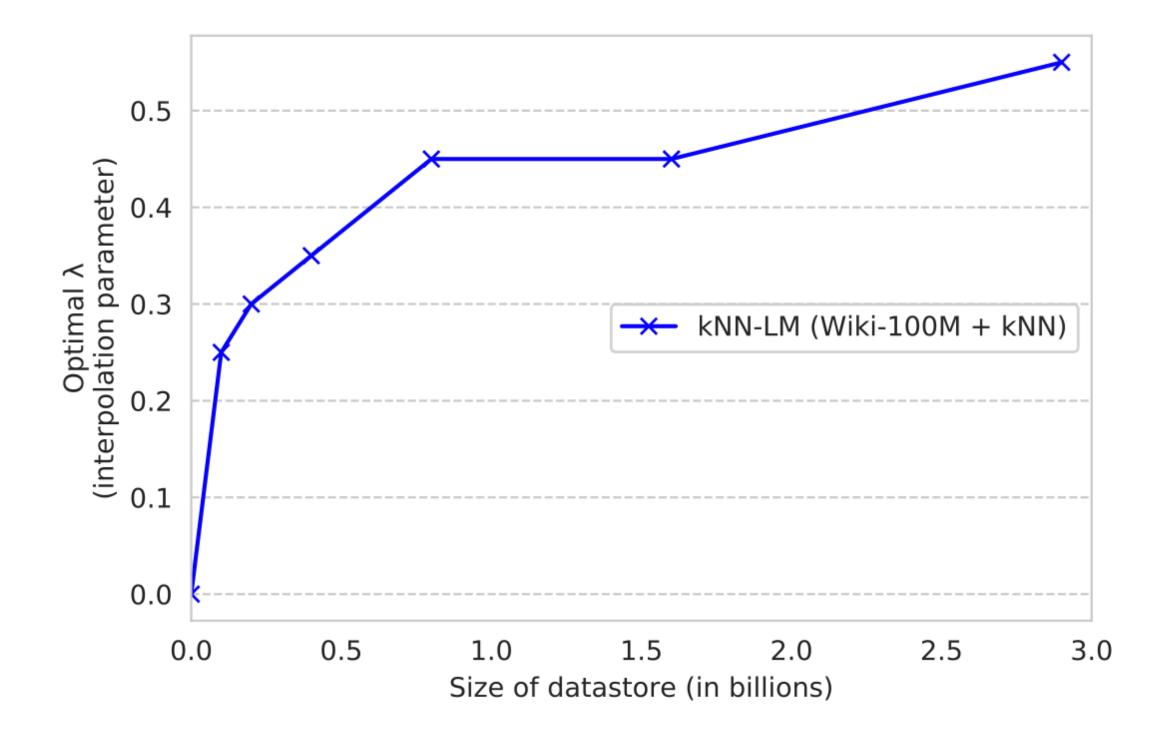
Table 1: Performance on WIKITEXT-103. The kNN-LM substantially outperforms existing work. Gains are additive with the related but orthogonal continuous cache, allowing us to improve the base model by almost 3 perplexity points with no additional training. We report the median of three random seeds.

Perplexity (↓)		# Trainable Params	
Dev	Test		
17.96	18.65	247M	
_	18.30	257M	
-	17.40	257M	
17.96	18.65	247M	
16.06	16.12	247M	
17.67	18.27	247M	
15.81	15.79	247M	



(a) Effect of datastore size on perplexities.

Figure 2: Varying the size of the datastore. (a) Increasing the datastore size monotonically improves performance, and has not saturated even at about 3B tokens. A kNN-LM trained on 100M tokens with a datastore of 1.6B tokens already outperforms the LM trained on all 3B tokens. (b) The optimal value of λ increases with the size of the datastore.



(b) Tuned values of λ for different datastore sizes.

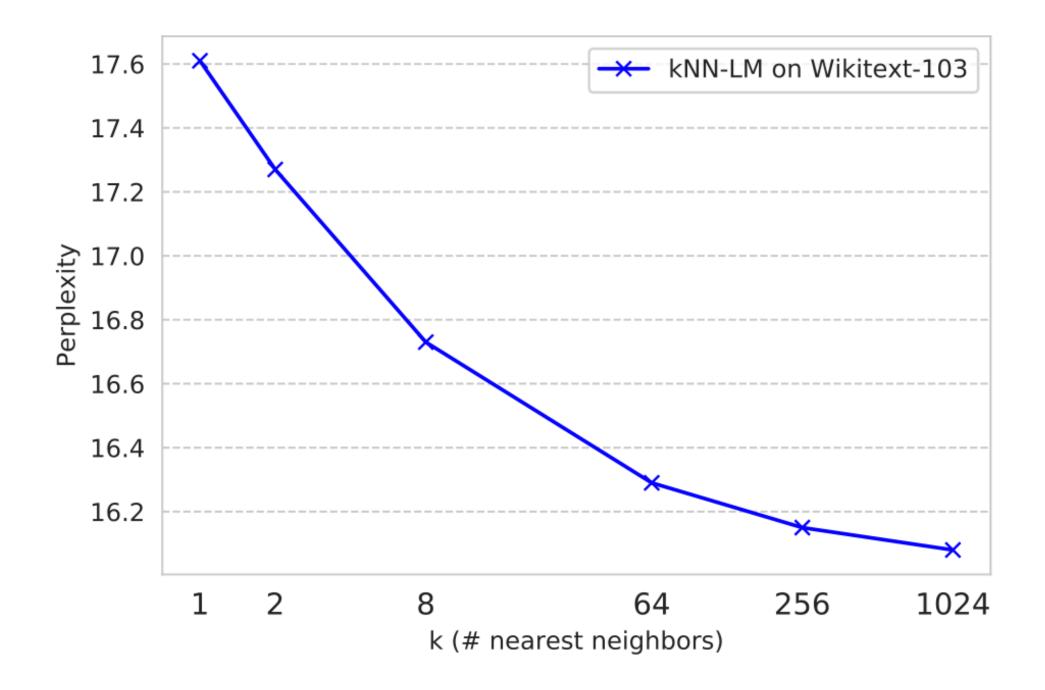
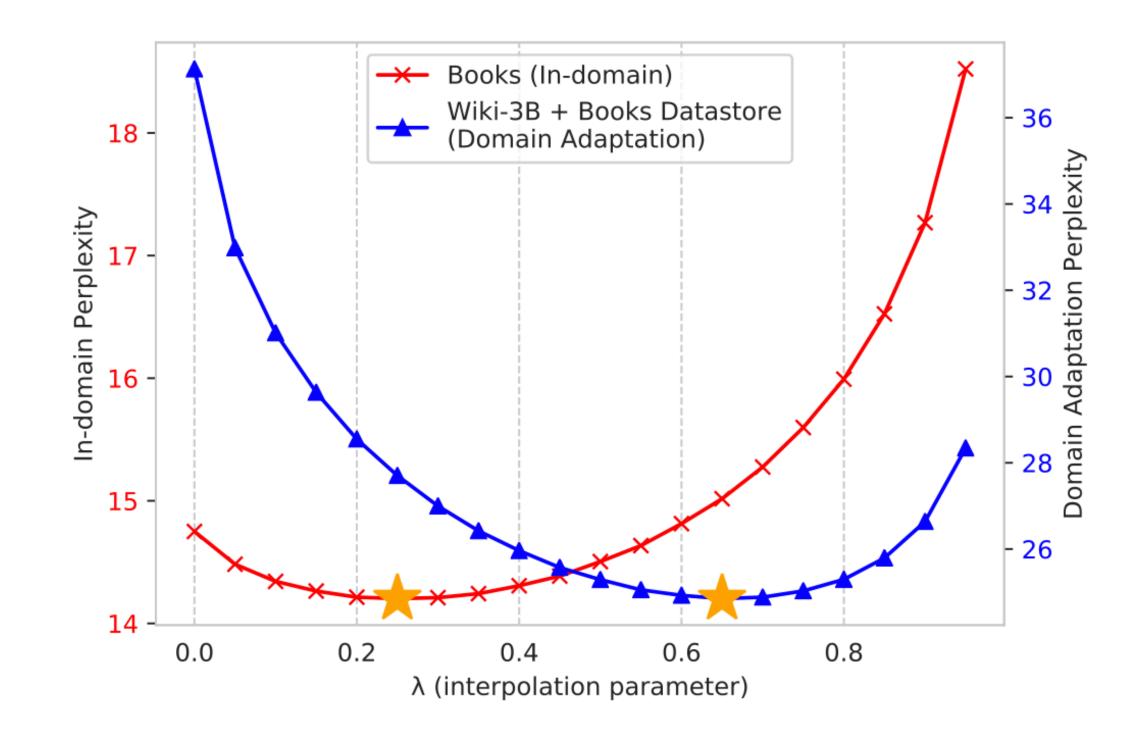


Figure 4: Effect of the number of nearest neigh- Figure 5: Effect of interpolation parameter λ bors returned per word on WIKITEXT-103 (val- on in-domain (left y-axis) and out-of-domain idation set). Returning more entries from the (right y-axis) validation set performances. More datastore monotonically improves performance. weight on p_{kNN} improves domain adaptation.



More data without training Train LM on data; Store kNN on larger dataset

- Train LM on 100M token dataset, then run on 3B token dataset to store context vectors in kNN store
- Use kNN-LM to predict next token
- Surprisingly kNN-LM (100M + 3B) does better than LM trained on 3B token dataset
- "retrieving nearest neighbors from the corpus outperforms training on it"
- "rather than training language models on ever larger datasets, we can use smaller datasets to learn representations and augment them with kNN-LM over a large corpus"

Test Context $(p_{kNN} = 0.998, p_{LM} = 0.124)$

it was organised by New Zealand international p promoted by civil servant Thomas Eyton, and man publican. The Natives were the first New Zealand t and also the first to wear all black. They played 10 the tour, as well as a small number of Victorian Ru ation football matches in Australia. Having made the...

Training Set Context

As the captain and instigator of the 1888-89 Native team to tour the British Isles – Warbrick had a last

promoted to a new first grade competition which immediately made a big impact on the...

centuries, few were as large as other players ma contend that his impact on the...

Nearly every game in the main series has either at tation, or both. The series has had a significant im

	st Target
player Joseph Warbrick, dev naged by James Scott, a team to perform a haka, 07 rugby matches during ules football and associ- e a significant impact on	elopment

	Training Set Target	Context Probabilit
ves – the first New Zealand sting impact on the	development	0.998
h started in 1900. Glebe	district	0.00012
anaged. However, others	game	0.000034
an anime or manga adap- npact on the	development	0.0000009

; ty

Test Context $(p_{kNN} = 0.995, p_{LM} = 0.025)$

For Australians and New Zealanders the Gallipol bolise an important milestone in the emergence of dent actors on the world stage and the developme identity. Today, the date of the initial landings, 2 zac Day in Australia and New Zealand and every gather at memorials in both nations, as well as Tu

Training Set Context

Despite this, for Australians and New Zealanders has come to symbolise an important milestone is nations as independent actors on the world stage sense of national identity. Today, the date of the is is a public holiday known as Anzac Day in Austra every year thousands of people gather at memor indeed in Turkey, to ...

On the anniversary date of his death, every year people gather at his home in Memphis to...

Twenty-five years after Marseille's death, fighter War II gathered to...

	Test Target		
oli campaign came to sym- of both nations as indepen- nent of a sense of national 25 April, is known as An- y year thousands of people furkey, to	honour		
	Training Set Target	Context Probability	
rs the Gallipoli campaign in the emergence of both and the development of a initial landings, 25 April, alia and New Zealand and rials in both nations, and	honour	0.995	
since 1997, thousands of	celebrate	0.0086	
er pilot veterans of World	honour	0.0000041	

Test Context $(p_{kNN} = 0.959, p_{LM} = 0.503)$

U2 do what they're best at, slipping into epic remade for the arena". In two other local newspape the song's inclusion in a sequence of greatest hits. 1997-...

Training Set Context

Following their original intent, "Sunday Bloody during any of the forty-seven shows on the Love song reappeared for a brief period during the Zoo the second half of PopMart Tour (1997-...

They are 6 times Champions and they won the Change experienced two previous stretches in the Sup

About \$40 million (\$61.4 million in 2018 dollars) acquisition. After weather-related construction d season of the winter of 1997-...

This made it the highest-rated season of The X-F highest rated Fox program for the 1997–...

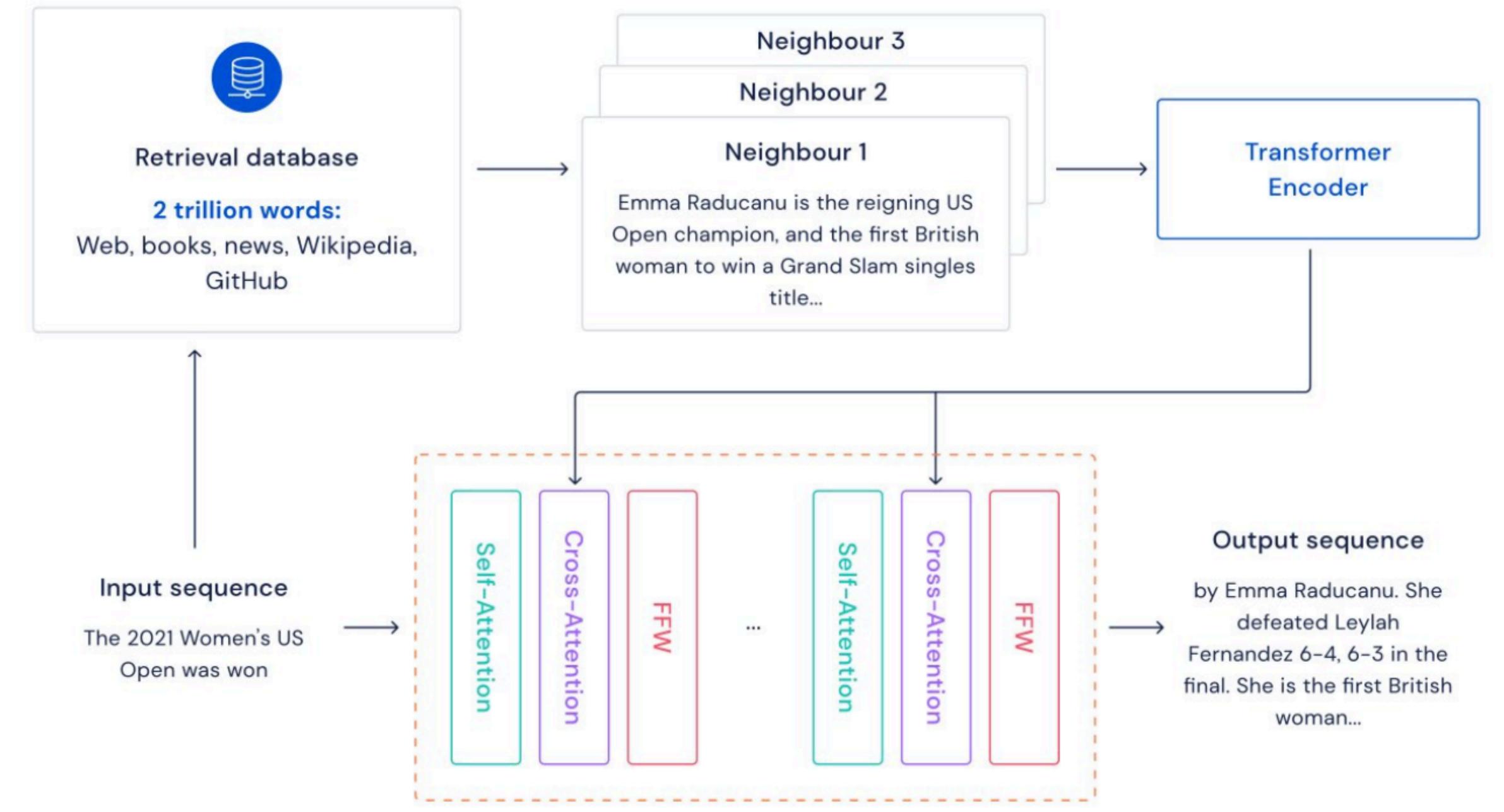
	Test Target		
rock mode, playing music per reviews, critics praised 5. For the PopMart Tour of	1998	998	
	Training Set Target	Context Probabili	
y Sunday" was not played etown Tour in 1989. The o TV Tour, and late during	1998	0.936	
hallenge Cup in 1938, and Iper League, 1997–	2002	0.0071	
was spent on the property delays due to the El Nino	1998	0.0015	
Files to air as well as the	98	0.0000004	

RETRO

Improving language models by retrieving from trillions of tokens

Sebastian Borgeaud[†], Arthur Mensch[†], Jordan Hoffmann[†], Trevor Cai, Eliza Rutherford, Katie Millican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron Huang, Loren Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irving, Oriol Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae[‡], Erich Elsen[‡] and Laurent Sifre^{†,‡} All authors from DeepMind, [†]Equal contributions, [‡]Equal senior authorship

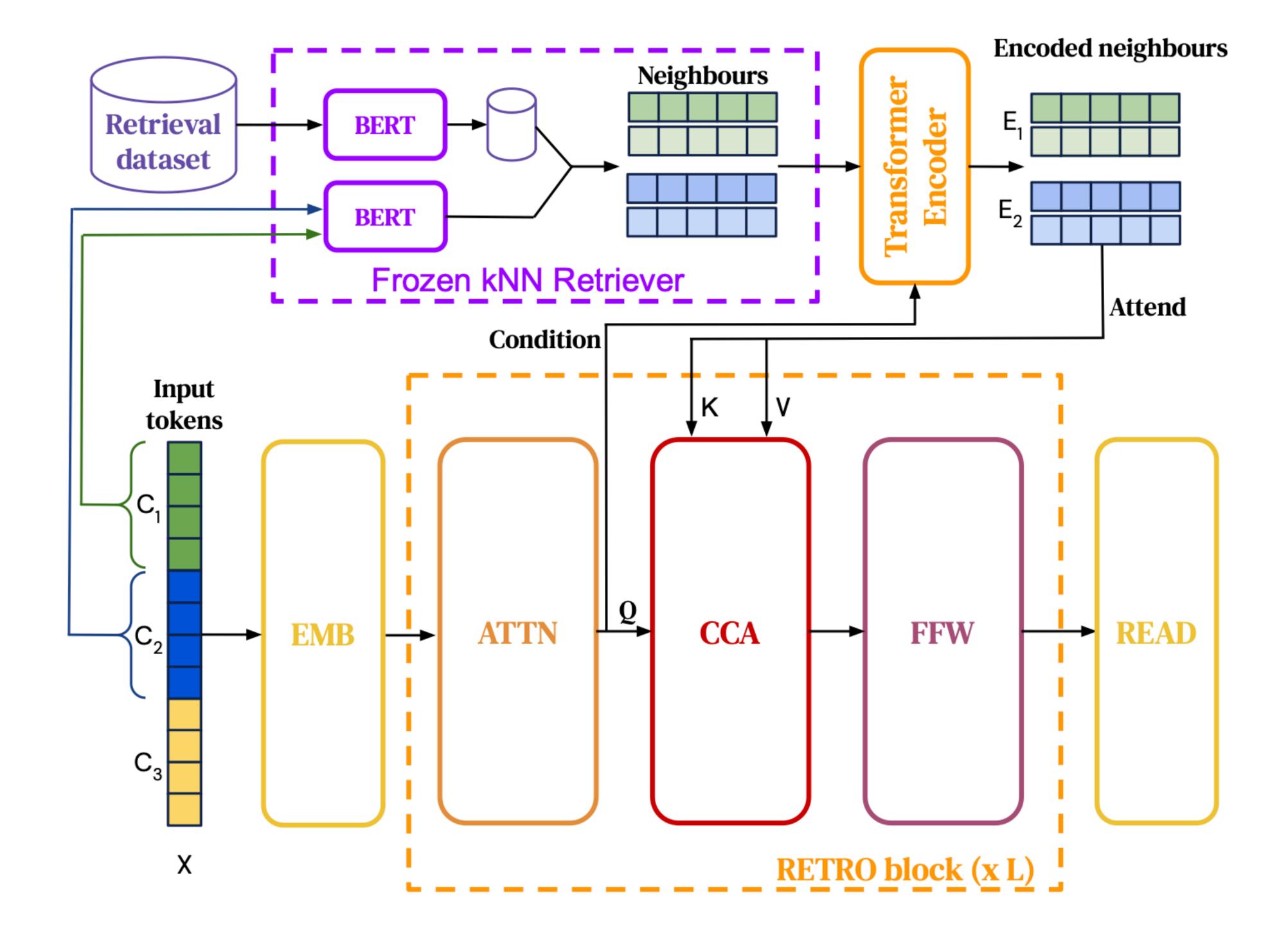
https://arxiv.org/abs/2112.04426

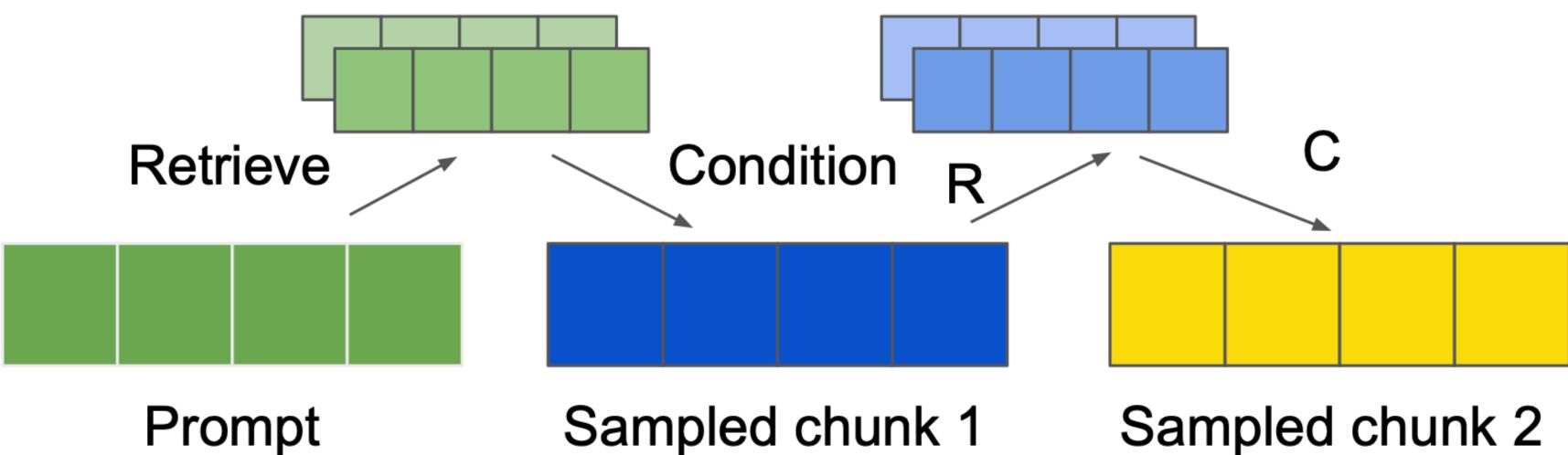


https://www.deepmind.com/blog/improving-languagemodels-by-retrieving-from-trillions-of-tokens

Table 3 | Comparison of RETRO with existing retrieval approaches.

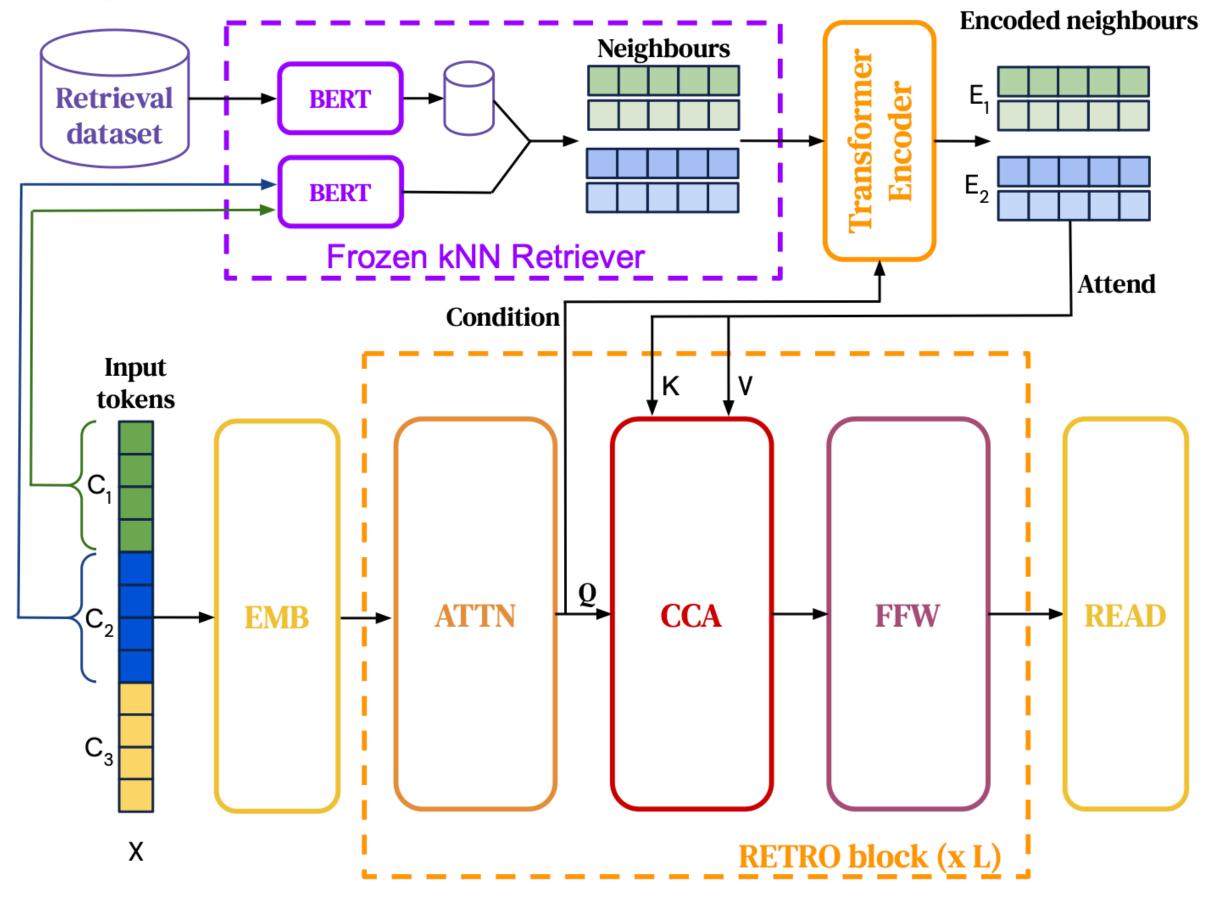
	# Retrieval tokens	Granularity	Retriever training	Retrieval integration
Continuous Cache	$O(10^3)$	Token	Frozen (LSTM)	Add to probs
kNN-LM	$O(10^{9})$	Token	Frozen (Transformer)	Add to probs
Spalm	$O(10^{9})$	Token	Frozen (Transformer)	Gated logits
Dpr	$O(10^9)$	Prompt	Contrastive proxy	Extractive QA
Realm	$O(10^9)$	Prompt	End-to-End	Prepend to prompt
RAG	$O(10^9)$	Prompt	Fine-tuned Dpr	Cross-attention
FiD	$O(10^9)$	Prompt	Frozen Dpr	Cross-attention
$Emdr^2$	$O(10^9)$	Prompt	End-to-End (EM)	Cross-attention
Retro (ours)	$O(10^{12})$	Chunk	Frozen (Bert)	Chunked cross-attention

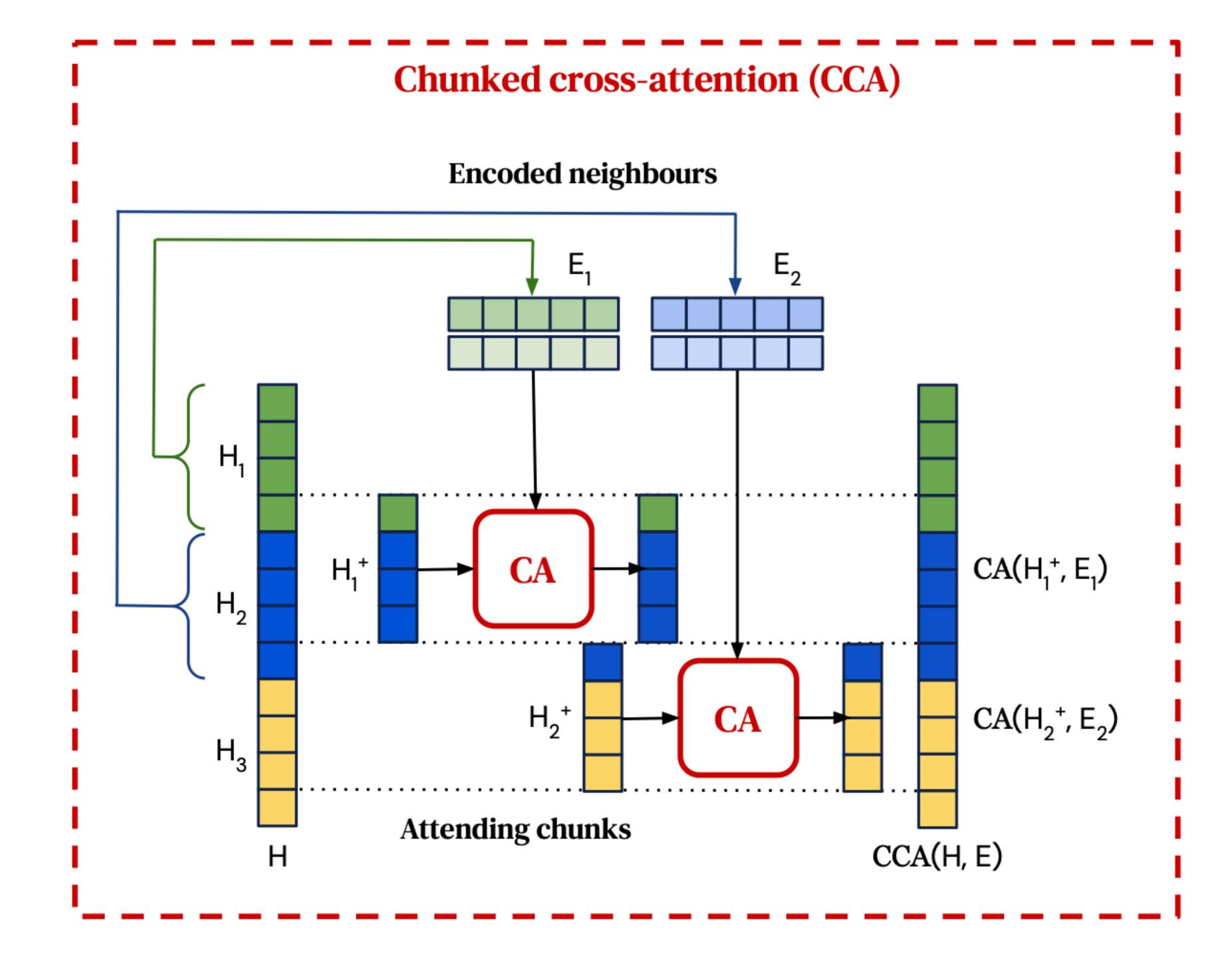




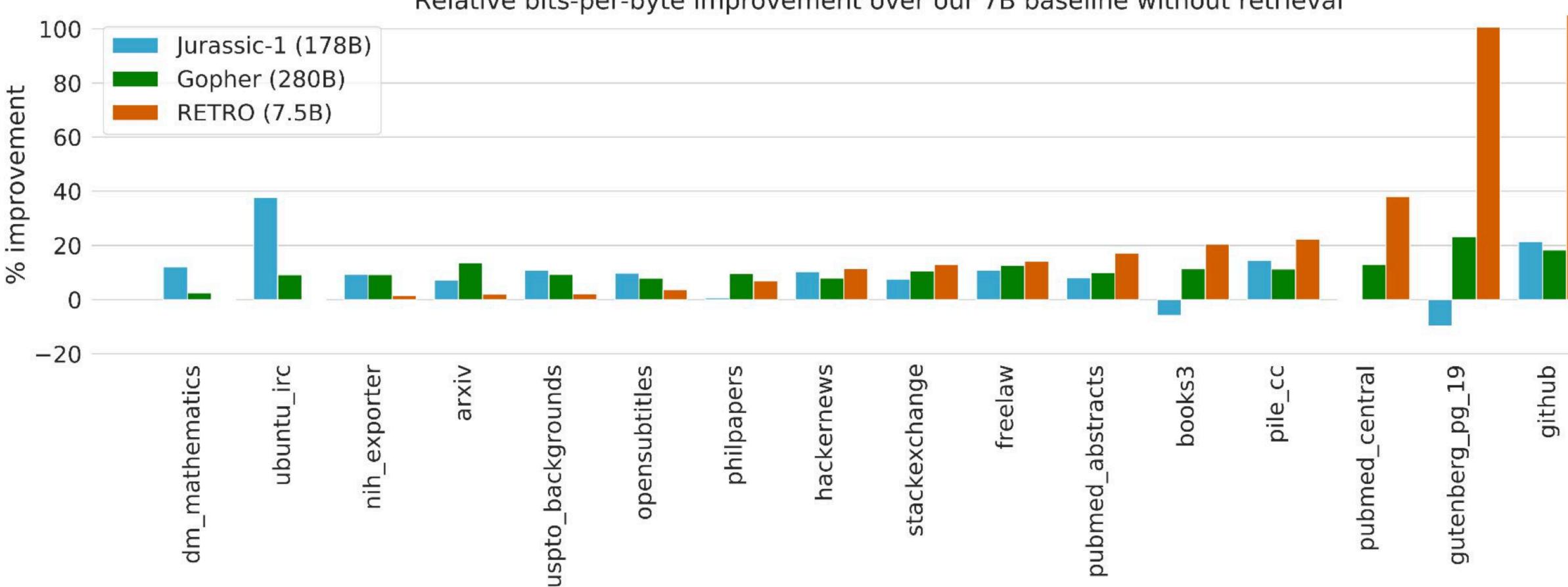
https://icml.cc/media/icml-2022/ Slides/17480 uuemO20.pdf

Sampled chunk 2





Language modelling: The Pile



https://icml.cc/media/icml-2022/ <u>Slides/17480_uuemO20.pdf</u>

Relative bits-per-byte improvement over our 7B baseline without retrieval

Gao et al. 2020. The Pile: An 800GB Dataset of Diverse Text for Language Modeling

RETRO Takeaways

- retrieval
- Consistent performance across benchmarks

 - But performance also improves on held-out tokens
- Future work on few-shot evaluation

https://icml.cc/media/icml-2022/ Slides/17480 uuemO20.pdf

RETRO is a general architecture, that is fully autoregressive and enables large scale

 Adding a 2T token database yields a performance improvement that's constant with model size: Similar performance to models with 10x more parameters on the Pile

Retrieval does exploit train-test leakage more than standard language models