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Statistical Machine Translation

Noisy Channel Model

*

e* = argmax Pr(e) - Pr(f|e)
e ~—— ——

Language Model Alignment Model



Alignment Task
e

(o Program —— Pr(e | f)

» Alignment Model: learn a mapping between fand e.
Training data: lots of translation pairs between fand e.




Statistical Machine Translation

The IBM Models

» The first statistical machine translation models were developed
at IBM Research (Yorktown Heights, NY) in the 1980s

» The models were published in 1993:
Brown et. al. The Mathematics of Statistical Machine Translation.
Computational Linguistics. 1993.
http://aclweb.org/anthology/J/J93/J93-2003.pdf

» These models are the basic SMT models, called:
IBM Model 1, IBM Model 2, IBM Model 3, IBM Model 4,
IBM Model 5
as they were called in the 1993 paper.

» We use eand f in the equations in honor of their system which
translated from French to English.
Trained on the Canadian Hansards (Parliament Proceedings)


http://aclweb.org/anthology/J/J93/J93-2003.pdf
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Generative Model of Word Alignment

» English e: Mary did not slap the green witch
» "“French” f: Maria no daba una botefada a la bruja verde

» Alignment a: {1,3,4,4,4,5,5,7,6}
g (féaeag) — (f8, e7) = (bruja, WltCh)

Visualizing alignment a
Mary did not slap the green witch

/ /\\\\

Maria no daba una botefada la  bruja verde




Generative Model of Word Alignment

Data Set

» Data set D of N sentences:
D ={(fV,eM),... (fV M)}

v

French f: (i, f, ..., 1)
English e: (e1,e2,...,¢€))

v

v

Alignment a: (a1, a2,...,4a)
length(f) = length(a) =/

v



Generative Model of Word Alignment

Find the best alignment for each translation pair

a* =argmaxPr(a | f,e)
a

Alignment probability

Pr(a|f,e)

Pr(f,a,e)

Pr(f,e)

Pr(e)Pr(f,a | e)

Pr(e) Pr(f | )

Pr(f,a|e)

Pr(f|e)
Pr(f,a | e)

Y aPr(f,ale)



Generative Model of Word Alignment
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Word Alignments: IBM Model 3

Generative “story” for P(f,a | e)
Mary did not slap the green witch

/ /IN NN

Mary not slap slap slap the the green

L A

Maria no daba wuna botefada a verde

Maria no daba una botefada a la bruja

witch

\

bruja

T T X

verde

(fertility)

(translate)

(reorder)



Word Alignments: IBM Model 3

Fertility parameter
n(¢; | e) : n(3 | slap); n(0 | did)
Translation parameter
t(fi | e5;) : t(bruja | witch)
Distortion parameter

d(fpos =1 | €pos = j,1,J) : d(87,9,7)



Word Alignments: IBM Model 3

Generative model for P(f,a | e)

I}

P(f.ale) = H”(¢af | es;)
i=1

t(fi | ea)
d(i| ajl,J)

X

X



Word Alignments: IBM Model 3

Sentence pair with alignment a = (4, 3,1, 2)

1 2 3 4
the house is small

e

1 2 3 4
klein ist das Haus

If we know the parameter values we can easily compute the
probability of this aligned sentence pair.

Pr(f,a|e) =
n(1 | the) x  t(das | the) x d(3]1,4,4) x
n(1| house) x t(Haus|house) x d(4]2,4,4) %
n(1|1is) x  t(ist | is) x d(2]3,4,4) x
n(1|small) x t(klein | small) x d(1]4,4,4)



Word Alignments: IBM Model 3

1 2 3 4 1 2 3 4
the house is small the building is small
1 2 3 4 1 2 3 4
klein ist das Haus das Haus st klein
1 2 3 4 5 1 2 3 4
the home is very small the house is small
1 2 3 4 1 2 3 4 5
das Haus ist klitzeklein das Haus ist ja klein

Parameter Estimation
» What is n(1 | very) = ? and n(0 | very) = ?
» What is t(Haus | house) = ? and t(klein | small) = ?
» What is d(1]4,4,4) =7 and d(1|1,4,4) =7



Word Alignments: IBM Model 3

1 2 3 4 1 2 k. 4
the house is small the building is small
1 2 3 4 1 2 3 4
klein ist das Haus das Haus ist klein
1 2 3 4 5 1 2 3 4
the home is very small the house is small
1 2 3 4 1 2 3 4 5
das Haus ist klitzeklein das Haus ist ja klein

Parameter Estimation: Sum over all alignments

)
D Pr(fale) =) [[n(¢a | es) x t(fi | es) x d(i| ai, 1, J)
a 1

a j=




Word Alignments: IBM Model 3

Summary

> If we know the parameter values we can easily compute the
probability Pr(a | f,e) given an aligned sentence pair

> If we are given a corpus of sentence pairs with alignments we
can easily learn the parameter values by using relative
frequencies.

» If we do not know the alignments then perhaps we can
produce all possible alignments each with a certain
probability?

IBM Model 3 is too hard: Let us try learning only t(f; | e,,)

I
> Pr(fale)=> [[n(¢ales) x t(fi| es)xd(i|al,J)

a /=1
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Word Alignments: IBM Model 1

Alignment probability

Pr(f,a | e)
Pr(a|fe) = —— 21°)
@It = S Prirale)
Example alignment Pr(f,a|e) =[], t(f | &)
1 2 3 4
the house is small Pr(f,a | e) =
| ! | | t(das | the) x
1 2 3 4
das Haus ist klein t(Haus | house) x

(
t(ist | is) x
t(klein | small)



Word Alignments: IBM Model 1

Generative “story” for Model 1

the house is small

LD

das Haus st klein (transiate)

Pr(f,a|e) = Ht(f|ea,



Generative Model of Word Alignment
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Finding the best word alignment: IBM Model 1

Compute the arg max word alignment

a = argmaxPr(a | e,f)
a

» For each f; in (f1,...,f;) build a= (&1,...,4))

d; = argmax t(f; | es;)
aj

Many to one alignment v/

1 2 3 4
the house is small

S

1 2 3 4
das Haus ist klein

One to many alignment X

1 2 3 4
the house is small

\W

1 2 3 4
das Haus ist klein



Generative Model of Word Alignment
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Learning parameters

» We would like to estimate the lexical translation probabilities
from a parallel corpus

» ... but we do not have the alignments

» Chicken and egg problem
» if we had the alignments,
— we could estimate the parameters of our generative model
» if we had the parameters,
— we could estimate the alignments


http://www.statmt.org/book

EM Algorithm

» Incomplete data
> if we had complete data, we could estimate model
» if we had model, we could fill in the gaps in the data

» Expectation Maximization (EM) in a nutshell

1.

2.
3.
4.

initialize model parameters (e.g. uniform)

assign probabilities to the missing data

estimate model parameters from completed data
iterate steps 2—-3 until convergence


http://www.statmt.org/book

EM Algorithm

. lamison ... la maison blue ... la fleur
the house ... the blue house ... the flower

> Initial step: all alignments equally likely

» Model learns that, e.g., /a is often aligned with the


http://www.statmt.org/book

EM Algorithm

. lamison ... la maison blue ... la fleur
the house ... the blue house ... the flower

» After one iteration

» Alignments, e.g., between /a and the are more likely


http://www.statmt.org/book

EM Algorithm

la maison ... la maison bleu ... la fleur

the house ... the blue house ... the flower

» After another iteration

> It becomes apparent that alignments, e.g., between fleur and
flower are more likely (pigeon hole principle)


http://www.statmt.org/book

EM Algorithm

la maison ... la maison bleu ... la fleur
the house ... the blue house ... the flower

» Convergence

> Inherent hidden structure revealed by EM


http://www.statmt.org/book

EM Algorithm

la maison ... la maison bleu ... la fleur

| X |

the house ... the que house ... the flower

p(lalt he)
p(le|the)
p( mai son| house)
p( bl eu] blue) =

3

4

0.876
563

= 0.45
= 0.33

4
3
0.

» Parameter estimation from the aligned corpus


http://www.statmt.org/book

IBM Model 1 and the EM Algorithm

v

EM Algorithm consists of two steps

v

Expectation-Step: Apply model to the data

» parts of the model are hidden (here: alignments)

» using the model, assign probabilities to possible values
» Maximization-Step: Estimate model from data
> take assign values as fact

» collect counts (weighted by probabilities)
» estimate model from counts

v

Iterate these steps until convergence


http://www.statmt.org/book

IBM Model 1 and the EM Algorithm

» We need to be able to compute:

» Expectation-Step: probability of alignments
» Maximization-Step: count collection


http://www.statmt.org/book

Word Alignments: IBM Model 1

Alignment probability

Pr(f,a | e)
Pr(f|e)
Pr(f,a | e)

> aPr(f.ale)
[Ty t(fi | &)

Yo llics t(fi | &)

Pr(a|f,e)

Computing the denominator

» The denominator above is summing over J! alignments

» An interlude on how compute the denominator faster ...



Word Alignments: IBM Model 1

Sum over all alignments
) Pr(fale) = ) Z...ZHt fi | &)
a

Assume (fi, f», f3) and (ey, &)

2

2 2
YD D thlen) xt(f2 ] ex) x t(f | ex)

31:1 3221 a3:1



Word Alignments: IBM Model 1

Assume (f1, f, ;) and (e1,e): | =3 and J =2
2 2 2
Z Z Z t(f | ea) X t(f2 | €3,) X t(f3 | €a5)

J!' = 23 terms to be added:

t(fl ‘ e1) X i‘(fg ‘ el) X t(f3 | 61) +
t(fl | el) X t(fz | e1) X t(fg | 62) +
t(fl ‘ 61) X t(fg | 62) X t(f3 | 61) +
t(hle) x tf|e) x tfiz]e) +
t(file) x thle) x tfz]e) +
t(hle) x thlea) x tfiz]e) +
t(file) x th|e) x tfz|e) +
t(hle) x the) x tf]e)



Word Alignments: IBM Model 1
Factor the terms:

—_
—_—
RS
¢ &
o+ ——
W&
(] ()]
2= ++
W S
~— — — — v o
D I ] -
W&
X X X X T
~— —

N RN N RN ~ i
el o &
.
- Ny
~—~ N’ N’
~—~~ oI N )
g —

- —~

W %

g (V)

+ NS

~— ~—

& =

« -

= (U]
N—r —

g

p—

ey

N—r



Word Alignments: IBM Model 1

Assume (f1, f, ;) and (e1,e): | =3 and J =2

Il

i=1 aj

2
t(fi | )
-1

| x J =2 x 3 terms to be added:



Word Alignments: IBM Model 1

Alignment probability

Pr(f,a|e)
Pr(f|e)
_ Il tlfilea)
Yallicy t(fi | &)
[Ti— t(f: | &)
I1i-s jJ:1 t(fi | &)

Pr(a|f,e) =




Learning Parameters: IBM Model 1

1 2 1 2 1 2
the house the book a  book
| / | | A
1 2 1 2 1 2
das Haus das Buch ein  Buch

Learning parameters t(f|e) when alignments are known

das, th Haus,hou
t(das | the) = zc%(FCa(sf;mee)) t(house | Haus) = W
. c(ein,a c(Buch,boo
t(ein | a) = S c(f.4) t(Buch | book) = S c(F,book)

N c(f,e)
e =2 2 5 f.e)
)

s=1 fyecfls) els




Learning Parameters: IBM Model 1

1 2 1 2 1 2
the house the book a  book
F~_ -7 N~ _ -0 s o
-l PP ]//’\\\\.

1 2 1 2 1 2
das Haus das Buch ein  Buch

Learning parameters t(f|e) when alignments are unknown

1 2 1 2 1 2 1 2

the house the house the house the house
1 2 1 2 1 2 1 2

das Haus das Haus das Haus das Haus

Also list alignments for (the book, das Buch) and (a book, ein
Buch)



Learning Parameters: IBM Model 1

Initialize t°(f|e)

t(Haus | the) = 0.25 t(das | house) = 0.5
t(das | the) = 0.5 t(Haus | house) = 0.5
t(Buch | the) = 0.25 t(Buch | house) = 0.0

Compute posterior for each alignment

1 2 1 2 1 2 1 2
the house the house the house the house

1 2 1 2 1 2 1 2
das Haus das Haus das Haus das Haus

Pr(a|f,e) = Pr(f.ale) _ [1j_y t(fi | es)
) Pr(f | e) HI{ZI J-_I:1 t(f; | e_[)



Learning Parameters: IBM Model 1

Initialize t°(f|e)

t(Haus | the) = 0.25 t(das | house) = 0.5
t(das | the) = 05 t(Haus | house) = 0.5
t(Buch | the) = 0.25 t(Buch | house) = 0.0

Compute Pr(a, f | e) for each alignment

1 2 1 2 1 2 1 2
the house the house the house the house
[~ | / > ]

1 2 1 2 1 2 1 2
das Haus das Haus das Haus das Haus
0.5 x 0.25 0.5x0.5 0.25 x 0.5 0.5 x 0.5

0.125 0.25 0.125 0.25



Learning Parameters: IBM Model 1

Compute Pr(a | f,e) = PPr(r?f’\f(‘;;)

Pr(f | e) = 0.125 + 0.25 + 0.125 4 0.25 = 0.75

1 2 1 2 1 2 1 2
the house the house the house the house
1 2 1 2 1 2 1 2
das Haus das Haus das Haus das Haus
0.125 0.25 0.125 0.25
0.75 0.75 0.75 0.75

Compute fractional counts ¢(f, e)
c(Haus,the) = 0.125+0.125 c(das, house) = 0.125+0.25
c(das,the) = 0.125+0.25 c(Haus, house) = 0.25+0.25
c(Buch, the) = 0.0 c(Buch, house) = 0.0



Learning Parameters: IBM Model 1

1 2

the house
[
1 2
das Haus

1 2
the house

1 2
das Haus

1
the

2
house

>

1
das

2
Haus

Pr(f| e) = 0.125 + 0.25 + 0.125 + 0.25 = 0.75

Expectation step: expected counts g(f, e)
g(das, house)

g(das, the)
g(Haus, the)
g(Buch, the)

Maximization

0.125+40.25

0.75
_ 0.12540.125
- 0.75

= 00

step: get new t(

g(Haus, house)
g(Buch, house)

U(f | e) =

_g(fe)
>re(fie

€)

e)

1 2
the house

]

1 2
das Haus

0.125+0.25

0.250+70‘r’.25
- 0.75
= 0.0



Learning Parameters: IBM Model 1

Expectation step: expected counts g(f, e)

g(das,the) = 0.5 g(das, house) =
g(Haus, the) = 0.334 g(Haus, house) =
g(Buch, the) = 0.0 g(Buch, house) =
total = 0.834 total =
S _ 1
Maximization step: get new t()(f | e) = ng fe)
t(Haus | the) = 0.4 t(das | house) =
t(das, | the) = 0.6 t(Haus | house) =
t(Buch | the) = 0.0 t(Buch | house) =

Keep iterating: Compute t(o), t(l), t(2), ...

until convergence

0.5
0.667
0.0
1.167

0.43
0.57
0.0



Parameter Estimation: IBM Model 1

EM learns the parameters t(- | -) that maximizes the log-likelihood
of the training data:

— (s) | e(s)
arg max L(t) = arg mtaxzs: log Pr(f'*) | ¥/ t)

v

Start with an initial estimate ty

v

Modify it iteratively to get ti, to, ...

» Re-estimate t from parameters at previous time step t_1

v

The convergence proof of EM guarantees that L(t) > L(t_1)

» EM converges when L(t) — L(t_1) is zero (or almost zero).
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Word Alignments: IBM Model 2

Generative “story” for Model 2
the house is small

LD

das Haus st klein (translate)

>

ist das Haus klein  (aiign)

I
Pr(f,a|e) =[] t(fi| es) x a(ai | i,1,J)
i=1



Word Alignments: IBM Model 2
Alignment probability

_ Pr(f,a|e)
Pr(a|f,e) = —Za Pr(f.a]e)

/

Pr(f,ale) =[] t(fi| es) x a(ai | i,1,J)
i=1

Example alignment Pr(f,a|e) =
1 2 3 4
the house is small t(das | the) x a(1 | 2,4,4) x
t(Haus | house) x a(2 | 3,4,4) x

1>22<3 l t(ist | is) x a(3 ] 1,4,4) x
ist das Haus klein t(klein | small) x a(4 | 4,4,4)



Word Alignments: IBM Model 2

Alignment probability

Pr(f,a|e
Pr(a|f,e) = P(r(f\‘e))
[T/ t(fi | es) x a(ai | i,1,J)
Za HI{Z]. t(f; ’ eai) X a(af ‘ ’7/7-/)

[T, t(fi | es) x a(a; | i,1,J)

[Ty S t(fi L&) x a(| i, 1,J)



Word Alignments: IBM Model 2

Learning the parameters

» EM training for IBM Model 2 works the same way as IBM
Model 1

» We can do the same factorization trick to efficiently learn the
parameters

> The EM algorithm:

» Initialize parameters t and a (prefer the diagonal for
alignments)

» Expectation step: We collect expected counts for t and a
parameter values

» Maximization step: add up expected counts and normalize to
get new parameter values

» Repeat EM steps until convergence.



Generative Model of Word Alignment
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Learning Parameters: IBM Model 3

Parameter Estimation: Sum over all alignments

ZPrfa|e)—ZHn¢a,\ea, ) x t(fi | es) x d(i | ai,1,J)

a =1



Sampling the Alignment Space

> Training IBM Model 3 with the EM algorithm

» The trick that reduces exponential complexity does not work
anymore

— Not possible to exhaustively consider all alignments
» Finding the most probable alignment by hillclimbing
start with initial alignment
change alignments for individual words
keep change if it has higher probability
continue until convergence

vV vy vy

» Sampling: collecting variations to collect statistics

» all alignments found during hillclimbing
» neighboring alignments that differ by a move or a swap


http://www.statmt.org/book

Higher IBM Models

IBM Model 1 | lexical translation

IBM Model 2 | adds absolute reordering model

IBM Model 3 | adds fertility model

IBM Model 4 | relative reordering model

IBM Model 5 | fixes deficiency

» Only IBM Model 1 has global maximum

>

training of a higher IBM model builds on previous model

» Compuationally biggest change in Model 3

>
—

trick to simplify estimation does not work anymore
exhaustive count collection becomes computationally too
expensive

sampling over high probability alignments is used instead


http://www.statmt.org/book

Summary

» IBM Models were the pioneering models in statistical machine
translation
» Introduced important concepts
» generative model
» EM training
» reordering models
» Only used for niche applications as translation model
» ... but still in common use for word alignment (e.g., GIZA++,

mgiza toolkit)


http://www.statmt.org/book

Natural Language Processing
Anoop Sarkar
anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 2: Word Alignment
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Word Alignment

Given a sentence pair, which words correspond to each other?

& c -

c +~ O [7)] (2]

o < > )] ()] > CT.)

é O © > M = o =

O T © -~ O 0O .= £ o
michael
assumes
that
he
will
stay
in
the
house



http://www.statmt.org/book

Word Alignment?

< —

C C -

£ o0 © ©

S = = ¢
john
does
not
live
here

Is the English word does aligned to
the German wohnt (verb) or nicht (negation) or neither?


http://www.statmt.org/book

Word Alignment?

a

ngg

S B8 £ o
john
kicked
the
bucket

How do the idioms kicked the bucket and biss ins grass match up?
Outside this exceptional context, bucket is never a good
translation for grass


http://www.statmt.org/book

Measuring Word Alignment Quality

» Manually align corpus with sure (5) and possible (F)
alignment points ( )

» Common metric for evaluation word alignments: Alignment
Error Rate (AER)

» AER = 0: alignment A matches all sure, any possible
alignment points

» However: different applications require different
precision /recall trade-offs


http://www.statmt.org/book

Word Alignment with IBM Models

» IBM Models create a many-to-one mapping
» words are aligned using an alignment function

» a function may return the same value for different input
(one-to-many mapping)
» a function can not return multiple values for one input

(no many-to-one mapping)

» Real word alignments have many-to-many mappings


http://www.statmt.org/book

Symmetrizing Word Alignments

o % e =
5§z 8 8 2 5 §£%4 8 2 B
E$83 .85 EE3 E$83 . 8sEE3
michael ‘ ‘ michael ‘ ‘
assumes assumes
that that
he he
will will
stay stay
in in
the the
house house
English to German German to English
$_s @ @ 3
G E 35 o @ 53
ESER . S5 E 83
michael ‘ ‘
assumes
that
he
will
stay
in
the
house

Intersection / Union

> Intersection plus grow additional alignment points
[Och and Ney, CompLing2003]


http://www.statmt.org/book

Growing heuristic

grow-diag-final(e2f,f2e)

1: neighboring = {(-1,0),(0,-1),(1,0),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)}

2: alignment A = intersect(e2f,f2e); grow-diag(); final(e2f); final(f2e);
grow-diag()

1: while new points added do

2:  for all English word e € [1...e,], foreign word f € [1...f,], (e, f) € A do
3: for all neighboring alignment points (enew, faew) do

4: if (énew unaligned OR frew unaligned) AND

(enew, fnew) S union(e2f,f2e) then

5: add (enew, frew) to A

6: end if

7 end for

8: end for

9: end while
final()

1: for all English word enew € [1...€,], foreign word foew € [1...15] do

2: if (€new unaligned OR frew unaligned) AND (€new, frew) € union(e2f,f2e)

then

3 add (€enew, foew) to A
4: end if
5: end for


http://www.statmt.org/book

More Recent Work on Symmetrization

» Symmetrize after each iteration of IBM Models [Matusov et
al., 2004]
> run one iteration of E-step for each direction
» symmetrize the two directions
» count collection (M-step)

> Use of posterior probabilities in symmetrization

> generate n-best alignments for each direction

» calculate how often an alignment point occurs in these
alignments

> use this posterior probability during symmetrization


http://www.statmt.org/book

Link Deletion / Addition Models

» Link deletion [Fossum et al., 2008]
» start with union of IBM Model alignment points
> delete one alignment point at a time
» uses a neural network classifiers that also considers aspects

such as how useful the alignment is for learning translation
rules

» Link addition [Ren et al., 2007] [Ma et al., 2008]

» possibly start with a skeleton of highly likely alignment points
» add one alignment point at a time


http://www.statmt.org/book

Discriminative Training Methods

» Given some annotated training data, supervised learning
methods are possible
» Structured prediction
» not just a classification problem
» solution structure has to be constructed in steps

» Many approaches: maximum entropy, neural networks,

support vector machines, conditional random fields, MIRA, ...

» Small labeled corpus may be used for parameter tuning of
unsupervised aligner [Fraser and Marcu, 2007]


http://www.statmt.org/book

Better Generative Models

» Aligning phrases
» joint model [Marcu and Wong, 2002]
» problem: EM algorithm likes really long phrases

» Fraser and Marcu: LEAF
» decomposes word alignment into many steps
» similar in spirit to IBM Models
» includes step for grouping into phrase


http://www.statmt.org/book

Summary

Lexical translation

v

v

Alignment

v

Expectation Maximization (EM) Algorithm

Noisy Channel Model
IBM Models 1-5

IBM Model 1: lexical translation

IBM Model 2: alignment model

IBM Model 3: fertility

IBM Model 4: relative alignment model
IBM Model 5: deficiency
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