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Modelling pairs of sequences

Input: sequence of words; Output: sequence of labels

Input British left waffles on Falkland Islands
Outputl N N V P N N
N P N N

Output2 N V

N Noun, e.g. islands
V Verb, e.g. leave, left
P Preposition, e.g. on



Modelling pairs of sequences

Input: sequence of words; Output: sequence of labels

Input British left waffles on Falkland Islands
Outputl N N V P N N

Output2 N V. N P N N

» 3 states: S ={N,V,P}
> Input sequence: x1,X2,...,Xp
» OQutput sequence: ti,ts,...,t, where t; € S

» How many output sequences?

| S



Modelling pairs of sequences

Input: sequence of characters; Output: sequence of labels
Input JEIRK2EEER 7 chars

Outputl BIBIIBI 7 labels
Output2 BIIIBBI 7 labels
: 7 labels
B Begin word
I Inside word

BIBIIBI JtI—K2E4E—FE (Beijing student competition)

BIIBBI b3 K2E—HE—LFE (Peking University Health
Competition)



Hidden Markov Models

> Input: x

Output space: Y(x)

Output: y € Y(x)

We want to learn a function f such that f(x) =y

v

v

v



Hidden Markov Models

Conditional model

» Construct function f using a conditional probability:
F(x) = arg max_p(y | x)
yEY(X)

» We can construct this function f using two principles:

» Discriminative learning: find the best output y given input x
» Generative modelling: model the joint probability p(x,y) to

find p(y | x)



Hidden Markov Models

Generative Model

» Start from the joint probability p(x,y):
p(x,y) = p(y)p(x | y)

» Also:
p(x,y) = p(x)p(y | x)

Bayes Rule:



Hidden Markov Models

Generative Model

» Bayes Rule: p(x 1)
_ pPy)px |y
p(y ‘ X) - p(X)

» where:

p(x)= > plxy)= Y py)p(x|y)

yeY(x) yeY(x)

» So using a generative model, we can find the best output y
using:
ply)p(x | y)

yeV(x) p(y)p(x | y)

p(yIX):Z
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Hidden Markov Model

i p(i): starting at state i
Model = ¢ a;;  p(j|i): transition to state i from state j
bi(o) p(o|i): output o at state i

X
o o

killer killer
crazy crazy
clown clown

problem problem



Hidden Markov Model Algorithms

» HMM as parser: compute the best sequence of states for a
given observation sequence.

» HMM as language model: compute probability of given
observation sequence.

» HMM as learner: given a corpus of observation sequences,
learn its distribution, i.e. learn the parameters of the HMM
from the corpus.

» Learning from a set of observations with the sequence of states
provided (states are not hidden) [Supervised Learning]

» Learning from a set of observations without any state
information. [Unsupervised Learning]



HMM as Parser

o w

A |0.25 aij|A | N
"= N[0T a=[A [00[10
N 10505
bi(o) | clown | killer | problem | crazy
b= A 0 0 0 1
N 0.4 0.3 |03 0

The task: for a given observation sequence find the most
likely state sequence. a;jj = p(j | i) and bi(o) = p(o | i)




HMM as Parser

killer killer
crazy crazy
clown clown
problem problem

» Find most likely sequence of states for killer clown
» Score every possible sequence of states: AA, AN, NN, NA
» P(killer clown, AA) = 74 - ba(killer) - aa a - ba(clown) = 0.0
» P(killer clown, AN) = ma - ba(killer) - aan - by(clown) = 0.0
» P(killer clown, NN) = 7y - by(killer) - ay n - by(clown) =
0.75-0.3-0.5-0.4 = 0.045
» P(killer clown, NA) = my - by(killer) - ay a - ba(clown) = 0.0

» Pick the state sequence with highest probability (NN=0.045).



HMM as Parser

> As we have seen, for input of length 2, and a HMM with 2
states there are 22 possible state sequences.

> In general, if we have g states and input of length T there are
q" possible state sequences.

» Using our example HMM, for input killer crazy clown problem
we will have 2% possible state sequences to score.

» Qur naive algorithm takes exponential time to find the best
state sequence for a given input.

» The Viterbi algorithm uses dynamic programming to provide
the best state sequence with a time complexity of g% - T
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Viterbi Algorithm for HMMs

» For input of length T: o1,..., 071, we want to find the
sequence of states sy,...,sT

» Each s; in this sequence is one of the states in the HMM.
» So the task is to find the most likely sequence of states:

arg max P(o1,...,071,51,...,ST)
S1,--+,ST

» The Viterbi algorithm solves this by creating a table Vs, t]
where s is one of the states, and t is an index between
1,...,T.



Viterbi Algorithm for HMMs

0w

killer killer
crazy crazy
clown clown
problem problem

» Consider the input killer crazy clown problem
» So the task is to find the most likely sequence of states:

arg r;r;aS?s P(killer crazy clown problem, sy, sy, s3, 54)
592,93 ,°4

» A sub-problem is to find the most likely sequence of states for
killer crazy clown:

arg smsgéa P(killer crazy clown, s1, s, s3)
1,92,



Viterbi Algorithm for HMMs

» In our example there are two possible values for s4:

max P(killer crazy clown problem, sy, s, s3,54) =
S1,--+,54

max { max P(killer crazy clown problem, sy, s, s3, N),
51,52,53

max P(killer crazy clown problem, sy, s, s3, A)}
51,52,53

> Similarly:

max P(killer crazy clown, sy, s, s3) =
S15-4+,53

max {max P(killer crazy clown, sy, sy, N),
51,52

max P(killer crazy clown, sy, s, A)}

51,52



Viterbi Algorithm for HMMs
» Putting them together:
P(killer crazy clown problem, s1, sy, s3, N) =
max { P(killer crazy clown, s, sy, N) - an n - by(problem),
P(killer crazy clown, s1, sy, A) - aa n - bn(problem)}

P(killer crazy clown problem, sy, s, s3, A) =
max { P(killer crazy clown, si, sy, N) - an a - ba(problem),
P(killer crazy clown, s, s>, A) - aa a - ba(problem)}
> The best score is given by:
max P(killer crazy clown problem,si, s, s3,54) =

S1y.--yS4

max s max P(killer crazy clown problem, s, s, s3, N),
N,A | 51,52,53

max P(killer crazy clown problem, sy, s, s3, A)}
51,52,53



Viterbi Algorithm for HMMs

» Provide an index for each input symbol:
1:killer 2:crazy 3:clown 4:problem

V[N,3] = maxP(killer crazy clown,si, sy, N)
51,92

V[N,4] = max P(killer crazy clown problem,si, sy, s3, N)
51,52,53

> Putting them together:

V[N,4] = max{V[N,3] ann - bn(problem),
VI[A,3] - aan - bn(problem)}

VIA,4] = max{V[N,3]-an - ba(problem),
VI[A,3] - aaa - ba(problem)}
> The best score for the input is given by:
max { V[N, 4], V[A, 4]}
» To extract the best sequence of states we backtrack (same
trick as obtaining alignments from minimum edit distance)



Viterbi Algorithm for HMMs

» For input of length T: o1,..., 07, we want to find the
sequence of states si,...,sT

» Each s; in this sequence is one of the states in the HMM.
» For each state g we initialize our table: V[q, 1] = 7q - bg(01)
» Then compute for t =1... T — 1 for each state g:

Vig,t+1] = mqu {VId',t] - ag,q bg(oe+1) }

> After the loop terminates, the best score is maxq Vg, T]



Learning from Fully Observed Data

A | 0.25 aj j A N
"=[IN|075 a=[A |00]10
N 05|05
bi(o) | clown | killer | problem | crazy
b= A 0 0 0 1
N 0.4 03 |03 0
Viterbi algorithm:
\"/ killer:1 crazy:2 clown:3 problem:4
A




Learning from Fully Observed Data

aj j A N
= ﬁ 8?2 a=|A 0010
- N 05|05
bi(o) | clown | killer | problem | crazy
b= A 0 0 0 1
N 0.4 03 |03 0
Viterbi algorithm:
\"/ killer:1 crazy:2 clown:3 problem:4
A 0 0.1125 0 0
N 0.225 0 0.045 0.00675




Probability models of language

aj j |74 N
= l\\// 832 a=|V 05|05
N 05|05
bi(o) | time | flies | can
b=|V 0.1 |01 |08
N 05 |04 |01

What is the best sequence of tags for each string below:
1. time
2. time flies

3. time flies can
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Hidden Markov Model

i p(i): starting at state i
Model = ¢ a;;  p(j|i): transition to state i from state j
bi(o) p(o|i): output o at state i

X
o o

killer killer
crazy crazy
clown clown

problem problem



Hidden Markov Model Algorithms

» HMM as parser: compute the best sequence of states for a
given observation sequence.

» HMM as language model: compute probability of given
observation sequence.

» HMM as learner: given a corpus of observation sequences,
learn its distribution, i.e. learn the parameters of the HMM
from the corpus.

» Learning from a set of observations with the sequence of states
provided (states are not hidden) [Supervised Learning]

» Learning from a set of observations without any state
information. [Unsupervised Learning]



HMM as a Language Model

0w

killer killer
crazy crazy
clown clown
problem problem

» Find P(killer clown) =3 P(y, killer clown)

» P(killer clown) = P(AA, killer clown) + P(AN, killer clown) +
P(NN, killer clown) + P(NA, killer clown)



HMM as a Language Model

killer killer
crazy crazy
clown clown
problem problem

» Consider the input killer crazy clown problem
» So the task is to find the sum over all sequences of states:

Z P(killer crazy clown problem, s1, s>, 3, 54)
51,52,53,54
» A sub-problem is to find the most likely sequence of states for

killer crazy clown:

Z P(killer crazy clown, s1, s3, s3)

51,52,53



HMM as a Language Model

> In our example there are two possible values for s;:

Z P(killer crazy clown problem, sy, sy, s3,51) =

S1s--+554
Z P(killer crazy clown problem, sy, sz, s3, N) +

51,52,53

Z P(killer crazy clown problem, sy, sp, s3, A)

51,52,53

> Very similar to the Viterbi algorithm. Sum instead of max,
and that's the only difference!



HMM as a Language Model

» Provide an index for each input symbol:
L:killer 2:crazy 3:clown 4:problem

V[N,3] = Z P(killer crazy clown, sy, sy, N)

51,52

VIN,4] = Z P(killer crazy clown problem, s1, sz, s3, N)

51,52,53
> Putting them together:
V[N,4 = VIN,3]-ann - bn(problem) +
V[A7 3] “dAN - bN(problem)
V[A,4] = VIN,3]-an.a- ba(problem) +
V[A7 3] W bA(probIem)

» The best score for the input is given by: V[N, 4] + V[A, 4]



HMM as a Language Model

» For input of length T: o1,..., 07, we want to find
P(Ol, N OT) = Z}/1,---7,VT P(y17 e YT,01,..., OT)
» Each y; in this sequence is one of the states in the HMM.
» For each state g we initialize our table: V[q,1] = mq - bg(01)

» Then compute recursively for t =1... T — 1 for each state g:

Vig,t+1] = Z {V[q’, t]-ag.q- bq(0t+1)}

> After the loop terminates, the best score is 3 V[gq, T]

» So: Viterbi with sum instead of max gives us an algorithm for
HMM as a language model.

» This algorithm is sometimes called the forward algorithm.
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Hidden Markov Model Algorithms

» HMM as parser: compute the best sequence of states for a
given observation sequence.

» HMM as language model: compute probability of given
observation sequence.

» HMM as learner: given a corpus of observation sequences,
learn its distribution, i.e. learn the parameters of the HMM
from the corpus.

» Learning from a set of observations with the sequence of states
provided (states are not hidden) [Supervised Learning]

» Learning from a set of observations without any state
information. [Unsupervised Learning]



Hidden Markov Model

a probability of starting at state i
Model § = ¢ a; probability of transition from state / to state j
bi(o) probability of output o at state i

Constraints : Zm = 1,23;,1- = 1,2 bi(o) =1
i j o

o0 o

killer killer
crazy crazy
clown clown

problem problem



HMM Learning from Labeled Data

o w

killer killer
crazy crazy
clown clown
problem problem

» The task: to find the values for the parameters of the HMM:
> TA, TN

dA A, dANs AN N5 AN, A

ba(killer), ba(crazy), ba(clown), ba(problem)

by (killer), by(crazy), bn(clown), by(problem)

vV vVvYyy



Learning from Fully Observed Data

Labeled Data L

x1,y1l: killer/N clown/N (x1

x2,y2: killer/N problem/N  (x2

x3,y3: crazy/A problem/N

x4,y4: crazy/A clown/N

x5,y5: problem/N crazy/A clown/N
x6,y6: clown/N crazy/A killer/N

killer,clown; y1 = N,N)
killer,problem; y2 = N,N.



Learning from Fully Observed Data

> Let's say we have m labeled examples:
[ = (xl,yl), ceey (Xm,ym)

» Each (Xg,yg) = {Ol, .. .,0T7T,S51,..., ST}
» For each (xg, yy) we can compute the probability using the
HMM:

> (x1 = killer, clown; y; = N, N) :
P(x1,y1) = mn - bn(killer) - an n - by(clown)
> (x2 = killer, problem; y, = N, N) :
P(x2,y2) = mn - by(killer) - ay n - by (problem)
» (x3 = crazy, problem; y; = A, N) :
P(x3,y3) = ma - ba(crazy) - aan - bn(problem)
> (x4 = crazy, clown; y, = A, N) :
P(xa,ys) = ma - ba(crazy) - aan - bn(clown)
> (xs = problem, crazy, clown; ys = N, A, N) :
P(xs,ys) = mn - bu(problem) - ay a - ba(crazy) - aan - bn(clown)
» (xg = clown, crazy, killer; y¢ = N, A, N) :
P(x6,¥6) = mn - by(clown) - ay a - ba(crazy) - aan - by/(killer)

> [1, P(xe,ye) = mn* - ma? - ann® - an,a® - aan® - aaa’ - bu(killer)* -

b (clown)* - by(problem)® - ba(crazy)*



Learning from Fully Observed Data

» We can easily collect frequency of observing a word with a
state (tag)

» f(i,x,y) = number of times i is the initial state in (x, y)
» f(i,j,x,y) = number of times j follows i in (x,y)
» f(i,0,x,y) = number of times i is paired with observation o

» Then according to our HMM the probability of x, y is:

X y) Hﬂ. i,x,y) Hald’,./xzy Hb O)flox,y



Learning from Fully Observed Data

» According to our HMM the probability of x, y is:
X y) Hﬂ. i,x,y) H ald’d X5Y) H b; O)f i,0,%,y)

» For the labeled data L = (x1,y1), .-, (Xe, Y¢), - -, (Xm, Ym)

m

P(L) = TPy

(=1

_ ﬁ H Fixe.ye) H F(isdxe.ye) Hb;(o)f(i’o’xé’yé)

(=1



Learning from Fully Observed Data
» According to our HMM the probability of x, y is:

P(L) _ ﬁ Hﬂ.if(’-vxlvﬂ) . H 7]’;1 Xe:Ye) H b f(l 0,%0,Y¢)
/=1

i ij
» The log probability of the labeled data (xl,yl), ooy (Xms Ym)
according to HMM with parameters 0 is:

L(O) = > logP(x,y)
=1

m
= D> fli,x i) logm +
=1

i
Z f(l',j,Xg,y[) |Og aj j +
iy

> " £(i, 0,0, ye) log bi(0)

i,o



Learning from Fully Observed Data

m
=1
Z f(i, xe, ye) log mi + Z f(i,J, xe, ye)log ajj + Z f(i, 0, x¢, ye) log bi(0)

iJj io

v

0 = (m,a,b)
L(0) is the log probability of the labeled data
(X17y1)7 teey (Xmaym)

We want to find a # that will give us the maximum value of
L(6)

Find the 0 such that %) — g

v

v

v



Learning from Fully Observed Data

(=1
Z f(l be@) |Og7T,‘ + Z f(i7j7X€7yK) |Og aj j + Z f("7 vaéayf) |Og b,‘(O)

iJ i

» The values of 7;, a; j, bi(0) that maximize L(f) are:

>0 Fisxe, ye)
>0 2k F (ks xe, ye)
o = > f(hJ:,Xe,yg)
D02k FUs ks xe, ye)
>0 fi,0,x0, ye)
202 orev (i, 0,0, ye)

T




Learning from Fully Observed Data

Labeled Data:

x1,y1l:
x2,y2:
x3,y3:
x4,y4:
x5,yb:
x6,y6:

killer/N clown/N
killer/N problem/N
crazy/A problem/N

crazy/A clown/N
problem/N crazy/A clown/N
clown/N crazy/A killer/N



Learning from Fully Observed Data

» The values of 7; that maximize L(6) are:

ZE f(i’xfuyé)

i

ZK Zk f(k7xfa)/f)

> TN = % and 4 = % because:
Zf(N>X£»YE) = 4
[
S F(Axey) = 2
)



Learning from Fully Observed Data

» The values of a;; that maximize L(0) are:

a,-,j

1. 1
> aNN =55 aNA = 5

Z f(NJ Navayé)
l

Z f(NaAabeZ)
¢

ZZ f(l,], X&YZ)
ZZ Zk f(’a k7X€7y€)

; aan = 1 and ag o = 0 because:

2 Zf(Av N7X£7.y€)
J4

2 Zf(A7A7XZ>yZ)
¢



Learning from Fully Observed Data

» The values of b;j(0) that maximize L(6) are:

b,'(O)

> bN(kiI/er) = % ; bN(c/own) = 1i0

ba(crazy) = 1 because:

Z f(N, killer, x¢, y¢)
¢

Z f(N, clown, x;, y)

Z f(N, crazy, x¢, ye)
¢

Z f(N, problem, x, yr)
7

20 F(is 0,0, 1)

Doy FUi, 0, X0, y0)

. bn(problem) = 2 and

3 > F(A, killer, x, y¢)
¢

4 Z f(A, clown, x¢, y¢)

0 Z f(A, crazy, xq, ye)

3 Z f(A, problem, x;, ys)
¢



Learning from Fully Observed Data

x1,yl: killer/N clown/N

x2,y2: killer/N problem/N

x3,y3: crazy/A problem/N

x4,y4: crazy/A clown/N

x5,y5: problem/N crazy/A clown/N
x6,y6: clown/N crazy/A killer/N

ajj
= ;3 gﬁg a=|A 00|10
N 05|05
bi(o) | clown | killer | problem | crazy
b=| A 0 0 0 1
N 0.4 03 |03 0
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Hidden Markov Model

i p(i): starting at state i
Model = ¢ a;;  p(j|i): transition to state i from state j
bi(o) p(o|i): output o at state i

X
o o

killer killer
crazy crazy
clown clown

problem problem



Learning from Fully Observed Data

m
=1
Z f(i, xe, ye) log mi + Z f(i,J, xe, ye)log ajj + Z f(i, 0, x¢, ye) log bi(0)

iJj io

v

0 = (m,a,b)
L(0) is the log probability of the labeled data
(X17y1)7 teey (Xmaym)

We want to find a # that will give us the maximum value of
L(6)

Find the 0 such that %) — g

v

v

v



Learning from Fully Observed Data

(=1
Z F(i, xe, ye) log i+ Y f(i,j, xe, ye) log aij+ > £(i, 0, yr) log bi(0)

ij i

v

Find the 6 such that dL(e) =0and 0§ = (m,a,b)
Split up L(€) into L(m ), L(a), L(b)
_\y: s . 0OL(m) O0L(a) OL(b)
Let VL=Vij,o0: r  Da; * 9by(o)
We must also obey constraints:

Zkﬂ'k = 1?2/( a,-7k = 1,20 b;(O) =1

v

v

v



Learning from Fully Observed Data

L(m) = (i, xe, ye) log i
=1

i

v

Let us focus on VL(7) (the other two: a and b are similar)

v

For the constraint ), m, = 1 we introduce a new variable
into our search for a maximum:

L(m, A) = L(m) + M1 =) m)
k

v

A is called the Lagrange multiplier

v

A penalizes any solution that does not obey the constraint

v

The constraint ensures that 7 is a probability distribution



Learning from Fully Observed Data

oL 9 =, - ,
(W): Zf(/,Xg,yz)logvr; +ZZfU,Xz,ﬂ)|Ong

or; orj
! =1 =1 j:j#i

the only part with variable ; no m; so derivative is 0

» We want a value of 7; such that aL(“’)‘) =0
0 Em: F(i, e, ye) logmi + A1 =Y me) | =0
8’/’1’,‘ s AUy
(=1 k
0 i f(i,xe,ye)logmi+X — Am; —)\Zﬂ") =0
(97r; \;,_/ N~~~ —. J
/=1 o flixpy) 0 _y JuFi

an; P or;



Learning from Fully Observed Data

oL(r)
or; 37r, Zf i, xe, ye) log i +sz(J x¢, ye) log 7;

=1 L=1jij#i

the only part with variable 7; no m; so derivative is 0

» We can obtain a value of m; wrt A:

oL(m, \) Em: f(i,xe, ye)
T

om; i
1 E:]_ 1

see previous slide

e iy X,
7= Zﬁfl g\ / )/2) (1)
» Combine 7;s from Eqn (1) with constraint ), 7 =1

A=) flkoxevi)

k (=1




Learning from Fully Observed Data

oL(m)
o 37T, Z:f i, xe, ye) log i +;J§fj,Xg,yg log 7;

the only part with variable r; no m; so derivative is 0

> The value of 7; for which aL( AN =0is Eqn (2) which can be
combined with the value of )\ "from Eqn (3).

= Z?:l fg\ivva}/E) (2)

A=D" fkoxeye) (3)

k (=1
227:1 f(i7X£7yf)
Zk 27:1 f(k,Xg,yg)

T =



Learning from Fully Observed Data

(=1
Z f(l be@) |Og7T,‘ + Z f(i7j7X€7yK) |Og aj j + Z f("7 vaéayf) |Og b,‘(O)

iJ i

» The values of 7;, a; j, bi(0) that maximize L(f) are:

>0 Fisxe, ye)
>0 2k F (ks xe, ye)
o = > f(hJ:,Xe,yg)
D02k FUs ks xe, ye)
>0 fi,0,x0, ye)
202 orev (i, 0,0, ye)

T
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Hidden Markov Model

i p(i): starting at state i
Model = ¢ a;;  p(j|i): transition to state i from state j
bi(o) p(o|i): output o at state i

X
o o

killer killer
crazy crazy
clown clown

problem problem



Hidden Markov Model Algorithms

» HMM as parser: compute the best sequence of states for a
given observation sequence.

» HMM as language model: compute probability of given
observation sequence.

» HMM as learner: given a corpus of observation sequences,
learn its distribution, i.e. learn the parameters of the HMM
from the corpus.

» Learning from a set of observations with the sequence of states
provided (states are not hidden) [Supervised Learning]

» Learning from a set of observations without any state
information. [Unsupervised Learning]



Learning from Unlabeled Data

Unlabeled Data U = xq, ..., Xm:

x1:
x2:
x3:
x4:

» y1, y2, y3, y4 are unknown.

killer clown
killer problem
crazy problem
crazy clown

» But we can enumerate all possible values for y1, y2, y3, y4

» For example, for x1:

x1,y1,1: killer/A clown/A
x1,y1,2: killer/A clown/N
x1,y1,3: killer/N clown/N
x1,y1,4: killer/N clown/A

killer clown

PL=TA
P2 =TA
P3 =TnN
Ps=TN

- ba(killer) -
- ba(killer) -

. bN(
. bN(

killer) -
killer) -

dAA - bA(C/own)

dAN - bN(C/OWI'I)
an,n - bn(clown)
an,a - ba(clown)



Learning from Unlabeled Data

v

Assume some values for § = 7, a, b

» We can compute P(y | x¢,0) for any y for a given x;

P(x,y | )
P(y | x¢,0) =
W0 =5 PGy 16)
» For example, we can compute P(NN | killer clown,f) as
follows:

7 - by(killer) - an n - by(clown)
> mi - bi(killer) - aj j - bj(clown)

v

P(y | x¢,0) is called the posterior probability



Learning from Unlabeled Data

v

v

v

v

v

Compute the posterior for all possible outputs for each
example in training:

For x1:

x1l,y1,1:
xl,y1,2:
x1l,y1,3:
xl,y1,4:

For x2:

x2,y2,1:
x2,y2,2:
x2,y2,3:
x2,y2,4:

Similarly for x3:

And x4:

killer clown
clown/A

clown/N
clown/N
clown/A

killer problem
killer/A problem/A
killer/A problem/N
killer/N problem/N
killer/N problem/A

killer/A
killer/A
killer/N
killer/N

crazy clown

(AA | killer
(AN | killer
(NN | killer
(

P
P
P
P(NA | killer

P
P
P
P

crazy problem

clown, )
clown, 6)
clown, )
clown, )

(AA | killer problem,f
(AN | killer problem,f
(NN | killer problem,f
(NA | killer problem,d

)
)
)
)



Learning from Unlabeled Data

» For unlabeled data, the log probability of the data given 6 is:

L(H) = ZlogZsz,yw
= Z'OgZPHXe, ) Pxe | 0)

» Unlike the fully observed case there is no simple solution to
finding € to maximize L(0)

> We instead initialize 6 to some values, and then iteratively
find better values of #: 69,01, ... using the following formula:

0t = arg max Q8,61

= ZZ P(y | x@,thl) -log P(x¢,y | 0)

=1 vy



Learning from Unlabeled Data

ot = argmaaxQ(H,Qt_l)

Q0,07 = D D Py |x,6"") log P(xe,y | 6)

=1y

= > > Plylx0h)

/=1y

(Zf i,xp,y) - logm;

+Zfleg, -log a;

+ 3 (7,0.5,) - log b,.(o))

i,o



Learning from Unlabeled Data

g(i,Xg) = ZPY|X€79t 1 (’ X,y )
g(i.j.xe) = ZPyIXe,Ht Y g, xey)

g(i,O,Xg) = ZPY‘XEaHt 1 (I OXZay)

0t = argmaxZZg/x@ log 7;
i

,a,b
+Zg I7J7X€)' |Ogai,j
ij

+ Zg(i, o, Xg) . Iog bj(O)

i,o



Learning from Unlabeled Data

ogmi+ »_gli.j,x)logai;j+ Y _ gli,o,x)log bj(o)

i ij i,o

» The values of 7;, a; j, bi(0) that maximize L(f) are:

Sl
I ZE Zkg(k7xf)
2 = Zég(l jaXK)
Y 202k 8k, xe)
b,'(O) _ Zég(“O?Xf)

Zﬁ Zo/evg(i’ O/vXE)



EM Algorithm for Learning HMMs

Initialize 6° at random. Let t = 0.
The EM Algorithm:
» E-step: compute expected values of y, P(y | x,6) and
calculate g(i, x), g(i,J, x),g(i, 0, x)
» M-step: compute ' = arg maxy Q(6,0'71)
» Stop if L(A*) did not change much since last iteration. Else
continue.

v

v

v

The above algorithm is guaranteed to improve likelihood of
the unlabeled data.

In other words, L(6%) > L(6t1)
But it all depends on #°!

v

v
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