
0

SFUNatLangLab

Natural Language Processing

Anoop Sarkar
anoopsarkar.github.io/nlp-class

Simon Fraser University

October 5, 2023

http://anoopsarkar.github.io/nlp-class

1

Natural Language Processing

Anoop Sarkar
anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 1: Feedforward neural networks

http://anoopsarkar.github.io/nlp-class

2

Log-linear models versus Neural networks

Feedforward neural networks

Stochastic Gradient Descent

Motivating example: XOR

Computation Graphs

3

Log linear model

▶ Let there be m features, fk(x, y) for k = 1, . . . ,m

▶ Define a parameter vector v ∈ Rm

▶ A log-linear model for classification into labels y ∈ Y:

Pr(y | x; v) = exp (v · f(x, y)))∑
y ′∈Y exp (v · f(x, y ′)))

Advantages

The feature representation f(x, y) can represent any aspect of the
input that is useful for classification.

Disadvantages

The feature representation f(x, y) has to be designed by hand
which is time-consuming and error-prone.

4

Log linear model
Figure from [1]

Disadvantages: number of combined features can explode

5

Neural Networks

Advantages

▶ Neural networks replace hand-engineered features with
representation learning

▶ Empirical results across many different domains show that
learned representations give significant improvements in
accuracy

▶ Neural networks allow end to end training for complex NLP
tasks and do not have the limitations of multiple chained
pipeline models

Disadvantages

For many tasks linear models are much faster to train compared to
neural network models

6

Alternative Form of Log linear model

Log-linear model:

Pr(y | x; v) = exp (v · f(x, y)))∑
y ′∈Y exp (v · f(x, y ′)))

Alternative form using functions:

Pr(y | x ; v) = exp (v(y) · f (x) + γy)∑
y ′∈Y exp

(
v(y ′) · f (x) + γy ′)

)
▶ Feature vector f (x) maps input x to Rd

▶ Parameters v(y) ∈ Rd and γy ∈ R for each y ∈ Y
▶ We assume v(y) · f (x) is a dot product. Using matrix

multiplication it would be v(y) · f (x)T

▶ Let v = {(v(y), γy) : y ∈ Y}

7

Log-linear models versus Neural networks

Feedforward neural networks

Stochastic Gradient Descent

Motivating example: XOR

Computation Graphs

8

Representation Learning: Feedforward Neural Network

Replace hand-engineered features f with learned features ϕ:

Pr(y | x ; θ, v) = exp (v(y) · ϕ(x ; θ) + γy)∑
y ′∈Y exp

(
v(y ′) · ϕ(x ; θ) + γy ′)

)
▶ Replace f (x) with ϕ(x ; θ) ∈ Rd where θ are new parameters

▶ Parameters θ are learned from training data

▶ Using θ the model ϕ maps input x to Rd : a learned
representation from x

▶ x ∈ Rd is a pre-trained vector of size d

▶ We will use feedforward neural networks to define ϕ(x ; θ)

▶ ϕ(x ; θ) will be a non-linear mapping to Rd

▶ ϕ replaces f which was a linear model

9

A Single Neuron aka Perceptron

A single neuron maps input x ∈ Rd to output h:

h = g(w · x + b)

▶ Weight vector w ∈ Rd , a bias b ∈ R are the parameters of the
model learned from training data

▶ Transfer function (also called activation function)

g : R → R

▶ It is important that g is a non-linear transfer function

▶ Linear g(z) = α · z + β for constants α, β (linear perceptron)

10

Activation Functions and their Gradients
from [2], Fig. 4.3

11

The sigmoid Transfer Function: σ

sigmoid transfer function:

g(z) =
1

1− exp(z)

Derivative of sigmoid:

dg(z)

dz
= g(z)(1− g(z))

12

The tanh Transfer Function

tanh transfer function:

g(z) =
exp(2z)− 1

exp(2z) + 1

Derivative of tanh:

dg(z)

dz
= 1− g(z)2

13

Alternatives to tanh

hardtanh:

g(z) =


1 if z > 1
−1 if z < −1
z otherwise

dg(z)

dz
=

{
1 if −1 ≤ z ≤ 1
0 otherwise

softsign:

g(z) =
z

1 + |z |

dg(z)

dz
=

{
1

(1+z)2
if z ≥ 0

−1
(1+z)2

if z < 0

14

The ReLU Transfer Function

Rectified Linear Unit (ReLU):

g(z) = {z if z ≥ 0 or 0 if z < 0}

or equivalently g(z) = max{0, z}

Derivative of ReLU:

dg(z)

dz
= {1 if z > 0 or 0 if z < 0}

non-differentiable or undefined if z = 0
(in practice: choose a value for z = 0)

15

The GeLU Transfer Function

Gaussian Error Linear Unit (GELU):

g(z) = {z
2
(1 + (

√
2

π
× (z + 0.044715× z3)))}

or

g(z) = {z
2
(1 + tanh(

√
2

π
× (z + 0.044715× z3)))}

Transfer function of choice for Transformer language models.

16

Desperately Seeking Transfer Functions
from [3]

Enumeration of non-linear functions

17

Desperately Seeking Transfer Functions
from [3]

Enumeration of non-linear functions

18

The Swish Transfer Function [3]

Enumeration of activation functions:
Swish was the end result of comparing all the auto-generated
activation functions for accuracy on standard datasets.

Swish uses the sigmoid σ:

g(z) = z · σ(βz)

▶ If β = 0 then g(z) = z
2 (a linear function; so avoid this)

▶ If β → ∞ then g(z) = ReLu

Derivative of Swish:

dg(z)

dz
= βg(z) + σ(βz)(1− βg(z))

19

The Swish Transfer Function [3]

Swish transfer function with
different values of β

First derivative of the Swish
transfer function

20

Derivatives w.r.t. parameters

Derivatives w.r.t. w :
Given

h = g(w · x + b)

derivatives w.r.t. w1, . . . ,wj , . . .wd :

dh

dwj

Derivatives w.r.t. b:
derivatives w.r.t. b:

dh

db

21

Chain Rule of Differentiation

Introduce an intermediate variable z ∈ R

z = w · x + b

h = g(z)

Then by the chain rule to differentiate w.r.t. w :

dh

dwj
=

dh

dz

dz

dwj
=

dg(z)

dz
× xj

And similarly for b:

dh

db
=

dh

dz

dz

db
=

dg(z)

dz
× 1

22

Single Layer Feedforward model

A single layer feedforward model consists of:

▶ An integer d specifying the input dimension. Each input to
the network is x ∈ Rd

▶ Think of it as a d dimensional word embedding

▶ An integer m specifying the number of hidden units

▶ A parameter matrix W ∈ Rm×d . The vector Wk ∈ Rd for
1 ≤ k ≤ m is the kth row of W

▶ A vector b ∈ Rd of bias parameters

▶ A transfer function g : R → R
g(z) = ReLU(z) or g(z) = tanh(z)

23

Single Layer Feedforward model (continued)

For k = 1, . . . ,m:

▶ The input to the kth neuron is: zk = Wk · x + bk
▶ The output from the kth neuron is: hk = g(zk)

▶ Define vector ϕ(x ; θ) ∈ Rm as: ϕ(x ; θ) = hk
▶ θ = (W , b) where W ∈ Rm×d and b ∈ Rd

▶ Size of θ is m × (d + 1) parameters

Some intuition
The neural network employs m hidden units, each with their own
parameters Wk and bk , and these neurons are used to construct a
hidden representation h ∈ Rm

24

Matrix Form

We can replace the operation:

zk = Wk · x + b for k = 1, . . . ,m

with

z = Wx + b

where the dimensions are as follows (vector of size m equals a
matrix of size m × 1):

z︸︷︷︸
m×1

= W︸︷︷︸
m×d

x︸︷︷︸
d×1︸ ︷︷ ︸

m×1

+ b︸︷︷︸
m×1

25

Single Layer Feedforward model (matrix form)

A single layer feedforward model consists of:

▶ An integer d specifying the input dimension. Each input to
the network is x ∈ Rd

▶ An integer m specifying the number of hidden units

▶ A parameter matrix W ∈ Rm×d

▶ A vector b ∈ Rd of bias parameters

▶ A transfer function g : Rm → Rm

g(z) = [. . . ,ReLU(zi), . . .] or
g(z) = [. . . , tanh(zi), . . .] or
g(z) = [. . . , σ(zi), . . .] or
for i = 1, . . . ,m

26

Single Layer Feedforward model (matrix form, continued)

▶ Vector of inputs to the hidden layer z ∈ Rm: z = Wx + b

▶ Vector of outputs from hidden layer h ∈ Rm: h = g(z)

▶ Define ϕ(x ; θ) = h where θ = (W , b)

▶ Define softmaxy =
exp(ry)∑
y′ exp(ry′)

for ry = v(y) · h + γy

▶ Let V = [. . . , vy , . . .] for y ∈ Y. vy ∈ Rm so V ∈ R|Y|×m.

▶ Let Γ = [. . . , γy , . . .] for y ∈ Y. Γ ∈ R|Y|.

Putting it all together:

r︸︷︷︸
vector of size |Y|

= softmax(V · ϕ(x ; θ) + Γ︸ ︷︷ ︸
for each y ∈ Y an R value

)

︸ ︷︷ ︸
A vector of size RY that sums to 1

27

Feedforward neural network

28

n-gram Feedforward neural network
from [5]

29

Log-linear models versus Neural networks

Feedforward neural networks

Stochastic Gradient Descent

Motivating example: XOR

Computation Graphs

30

Simple stochastic gradient descent

Inputs:

▶ Training examples (x i , y i) for i = 1, . . . , n

▶ A feedforward representation ϕ(x ; θ)

▶ Integer T specifying the number of updates
▶ A sequence of learning rates: η1, . . . , ηT where ηt ∈ [0, 1]

▶ One should experiment with learning rates: 0.001, 0.01, 0.1, 1
▶ Bottou (2012) suggests a learning rate ηt = η1

1+η1×λ×t where λ
is a hyperparameter that can be tuned experimentally

Initialization:
Set v = (v(y), γy) for all y , and θ to random values

31

Gradient descent

Algorithm:

▶ For t = 1, . . . ,T
▶ Select an integer i uniformly at random from {1, . . . , n}
▶ Define L(θ, v) = − logP(yi | xi ; θ, v)
▶ For each parameter θj and vk(y) and γy (for each label y):

θj = θj − ηt × dL(θ, v)

dθj

vk(y) = vk(y)− ηt × dL(θ, v)

dvk(y)

γ(y) = γ(y)− ηt × dL(θ, v)

dγ(y)

▶ Output: parameters θ, v = (v(y), γy) for all y

32

Log-linear models versus Neural networks

Feedforward neural networks

Stochastic Gradient Descent

Motivating example: XOR

Computation Graphs

33

Motivating example: the XOR problem

From Deep Learning by Goodfellow, Bengio, Courville

We will assume a training set where each label is in the set
Y = {−1,+1}
There are four training examples:

x1 = [0, 0], y1 = −1

x2 = [0, 1], y2 = +1

x3 = [1, 0], y3 = +1

x4 = [1, 1], y4 = −1

34

Motivating example: the XOR problem

35

Motivating example: the XOR problem

Theorem
For examples (x i , y i) for i = 1, . . . , 4 as defined previously for the
feedforward neural network:

Pr(y | x ;W , b, v) =
exp (v(y) · g(Wx + b) + γy)∑

y ′∈Y exp
(
v(y ′) · g(Wx + b) + γy ′)

)
where x ∈ R2 (d = 2) and let m = 2 so W ∈ R2×2 and b ∈ R2

and g is a ReLU transfer function.
Then there are parameter settings v(−1), v(+1), γ−1, γ+1, W , b
such that

p(y i | x i ; v) > 0.5 for i = 1, . . . , 4

36

Motivating example: the XOR problem

Proof Sketch

Define W =

[
1 1
1 1

]
and b =

[
0
−1

]
Then for each input x

calculate values of z = Wx + b and h = g(z):

x = [0, 0] ⇒ z = [0,−1] ⇒ h = [0, 0]

x = [1, 0] ⇒ z = [1, 0] ⇒ h = [1, 0]

x = [0, 1] ⇒ z = [1, 0] ⇒ h = [1, 0]

x = [1, 1] ⇒ z = [2, 1] ⇒ h = [2, 1]

37

Motivating example: the XOR problem

Proof Sketch (continued)

p(+1 | x ; v) =
exp(v(+1) · h + γ+1)

exp(v(+1) · h + γ+1) + exp(v(−1) · h + γ−1)

=
1

1 + exp(−(u · h + γ))

To satisfy P(y i | x i ; v) > 0.5 for i = 1, . . . , 4 we have to find
parameters u = v(+1)− v(−1) and γ = γ+1 − γ−1 such that:

u · [0, 0] + γ < 0

u · [1, 0] + γ > 0

u · [1, 0] + γ > 0

u · [2, 1] + γ < 0

u = [1,−2] and γ = −0.5 satisfies these constraints.

38

Solving the XOR problem

39

Log-linear models versus Neural networks

Feedforward neural networks

Stochastic Gradient Descent

Motivating example: XOR

Computation Graphs

40

Complex neural networks

Neural network with a loss function
Consider a neural network trained using a squared-error loss. For
the correct answer y∗ the output value y is compared using the
function (y∗ − y)2.

h′ = Wxhx + bh

h = tanh(h′)

y = whyh + by

ℓ = (y∗ − y)2

41

Derivative wrt loss

h′ = Wxhx + bh

h = tanh(h′)

y = whyh + by

ℓ = (y∗ − y)2

We want to compute dℓ
dby

, dℓ
dwhy

, dℓ
dbh

, dℓ
dWxh

dℓ

dby
=

dℓ

dy

dy

dby
dℓ

dwhy
=

dℓ

dy

dy

dwhy

dℓ

dbh
=

dℓ

dy

dy

dh

dh

dh′
dh′

dbh
dℓ

dWxh
=

dℓ

dy

dy

dh

dh

dh′
dh′

dWxh

42

Computation graphs and automatic differentiation
Figure from [1]

43

Computation graphs and automatic differentiation

▶ Automatic differentiation is a two-step dynamic programming
algorithm that operates over the second graph and performs:

Forward calculation which traverses the nodes in the graph in
topological order, calculating the actual result of
the computation.

Back propagation which traverses the nodes in reverse
topological order, calculating the gradients.

▶ Many neural network toolkits can perform auto differentiation
for very large computation graphs.

44

[1] Graham Neubig
Neural Networks for NLP
2018.

[2] Yoav Goldberg
Neural Network Methods for Natural Language Processing
2017.

[3] Prajit Ramachandran, Barret Zoph, Quoc V. Le
Searching for Activation Functions
2017.

[4] Xavier Glorot, Yoshua Bengio
Understanding the difficulty of training deep feedforward
neural networks
2010.

[5] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian
Jauvin
A Neural Probabilistic Language Model
2003.

45

Acknowledgements

Many slides borrowed or inspired from lecture notes by Michael
Collins, Chris Dyer, Kevin Knight, Chris Manning, Philipp Koehn,
Adam Lopez, Graham Neubig, Richard Socher and Luke
Zettlemoyer from their NLP course materials.

All mistakes are my own.

A big thank you to all the students who read through these notes
and helped me improve them.

	Log-linear models versus Neural networks
	Feedforward neural networks
	Stochastic Gradient Descent
	Motivating example: XOR
	Computation Graphs
	Acknowledgements

