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Algorithm 0 Standard Attention Implementation

Require: Matrices Q,K,V € RV*¢ in HBM.
1: Load Q, K by blocks from HBM, compute S = QK ", write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4: Return O.

https.//arxiv.org/abs/2205.14135
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Given the inputs Q,K,V € RV*? in HBM, we aim to compute the attention output O € RV¥*? and write it to
HBM. Our goal is to reduce the amount of HBM accesses (to sub-quadratic in N).

split the inputs Q, K, V into blocks, load them from slow HBM to fast SRAM

Tiling. We compute attention by blocks. Softmax couples columns of K, so we decompose the large
softmax with scaling [51, 60, 66]. For numerical stability, the softmax of vector x € R® is computed as:

f(x)
£(x)

m(x) := m;dx xi, f(x):= [exl‘m(x) exB‘m(x)] , L(x) = Zf(x)i, softmax(x) :=

https://arxiv.org/abs/2205.14135
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Algorithm 1 FLASHATTENTION

Require: Matrices Q, K,V € R¥*4 in HBM, on-chip SRAM of size M.

1: Set block sizes B, [i‘ﬂ B, = mm([ﬁ} d).

2: Initialize O = (0)yxqg € RV*4 £ = (0)y € RV, m = (—00)y € RN in HBM.

3: Divide Q into 7, = [Blr] blocks Qi,...,Qr. of size B, X d each, and divide K,V in to 7, = [B%] blocks
Ki,...,Kr. and Vi,...,Vr, of size B, X d each.

4: Divide O into 7, blocks Oy, ..., Or of size B, X d each, divide € into T, blocks ¢;,...,{r of size B, each,

divide m into T, blocks m,...,mg of size B, each.

5: for 1< j<T, do

6: Load K;,V; from HBM to on-chip SRAM.

7. for1<i<T7T, do

8: Load Qi, 0;,¢;,m; from HBM to OIl—Chip SRAM.

9: On chip, compute Sij = QJ(?~ e RBr*Bc
10: On Chip, compute I’;’li]‘ = I'OWHI&X(Sij) S RBr, f)ij = exp(Sij — ﬁ”lij) e RBrxBe (pOiIltWiSG), gij =

rowsum(f’ij) c R%".

11: On chip, compute m;°" = max(m;, m;;) € RBr. eV = e™ T+ e m?ewflj c R5r.
12: Write O; « diag(f?ew)‘l(diag(fi)eml m="Q; + e m?ew P;;V;) to HBM.
13: Write €; « €7V, m; « m?*" to HBM.
14: end for
_ Therefore if we keep track of some extra statistics (m(x), €(x)), we can compute softmax one block at a time,?
:'Z: ?{I;tdufzro We thus split the inputs Q, K,V into blocks (Algorithm [1\ line 3), compute the softmax values along with

extra statistics (Algorithm 1 line 10), and combine the results (Algorlthm 1 line 12).
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KV cache (and paged attention)

https://arxiv.org/pdf/2309.06180
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Naively, for each new token (e.g. "blue" above) the key and value vectors are
recomputed every time, for each new token.

K and V contain information about the entire sequence, and query is the new token
being added. So we are doing softmax(gK)V to compute attention.

https://mett29.qgithub.io/posts/kv-cache/
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This is a random se_nte,nce_, ond the sky 'S

co\chefl K k

During the sequence generation one token at a time, the two matrices and do not
change very much

Once the embedding for the new token is computed, it’s not going to change, no
matter how many more tokens we generate

That is why the key and value vectors of existing tokens are often cached for
generating future tokens. This approach leads to what is called the KV cache.

https://mett29.github.io/posts/kv-cache/
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1 slot for 2 slots future used 1 slot future used

generated token (reserved) External fragmentation (reserved)
A A — N
Four | score | and | seven | years | ago our |fathers brough You | only | live | once
. ~ J 4 N . % J 4 ~
7 KV cache states for 2038 slots never used 3 KV cache states for 507 slots never used
request A's prompt (internal fragmentation) request B's prompt (Internal fragmentation)
Request A Request B
current iteration current iteration

Figure 3. KV cache memory management in existing systems. Three types of memory wastes — reserved, internal fragmentation,
and external fragmentation — exist that prevent other requests from fitting into the memory. The token in each memory slot
represents its KV cache. Note the same tokens can have different KV cache when at difterent positions.

https://arxiv.org/pdf/2309.06180



https://arxiv.org/pdf/2309.06180

Scheduler

|

KV Cache Manager

Block tables

N

CPU Block
Allocator

Worker 0

GPU Block

Allocator

Cache Model .I

Engine Shard O N ==
Worker 1

e || ahoee | Y=
Worker N - 1

Cocre || qosel | I

Figure 4. vLLM system overview.

https://arxiv.org/pdf/2309.06180



https://arxiv.org/pdf/2309.06180

Query
vector

forth

Figure 5. Illustration of the PagedAttention algorithm,
where the attention key and values vectors are stored as

Block 1

Block 2

Block O

Key and value vectors

years

ago

our

fathers

brought

forth

Four

score

and

seven

non-contiguous blocks in the memory.

https://arxiv.org/pdf/2309.06180



https://arxiv.org/pdf/2309.06180

REFORMER: THE EFFICIENT TRANSFORMER

Nikita Kitaev™ F.ukasz Kaiser™ Anselm Levskaya
U.C. Berkeley & Google Research ~ Google Research Google Research
kitaev@cs.berkeley.edu {lukaszkaiser, levskaya}@google.com

https://openreview.net/forum?id=rkgNKkHtvB
https://iclr.cc/virtual 2020/poster rkgNKkHtvB.html



https://iclr.cc/virtual_2020/poster_rkgNKkHtvB.html
https://openreview.net/forum?id=rkgNKkHtvB

Transformer

From the BERT documentation:

Using the default training scripts ( run_classifier.py and run_squad.py ), we benchmarked the maximum batch size on
single Titan X GPU (12GB RAM) with TensorFlow 1.11.0:

System Seq Length  Max Batch Size
BERT-Large 64 12
128 6
256 2

" +——ZERO

12



Outlook

In the near future,
models withg
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Transformers can be adapted to run on today’s hardware over entire chapters
or documents of text - up to T million tokens at a time.

Moreover, the model should run on a single GPU or TPU device.



Efficiency Challenges

e Memory Efficiency
o Reduce memory usage with reversible residual layers, as in RevNet
(Gomez+ 17]

e [ime Complexity
o Introduce fast attention with locality sensitive hashing (LSH)
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No caching needed when
using reversible layers



Reversible Transformer: BLEU Scores on WMT English-German

B Transformer [Vaswani+17] *

27 6 28.4 29.1 B Reversible Transformer

27.3

* original reported numbers; differences in
BLEU from the Reversible Transformer are

Base model Big model likely due to hyperparameter tuning
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e Reversible Layers and Chunking make the Transformer memory-efficient
without sacrificing accuracy

e | SH Attention approximates global attention with O(L log L) time
complexity
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Model / Paper Complexity | Decode | Class
Memory Compressed (Liu et al., 2018) O(N?) v FP+M
Image Transformer (Parmar et al., 2018) O(N.m) v FP

Set Transformer (Lee et al., 2019) O(kN) X M
Transformer-XL (Dai et al., 2019) O(N?) v RC
Sparse Transformer (Child et al., 2019) O(NVN) v FP
Reformer (Kitaev et al., 2020) O(N log N) v LP
Routing Transformer (Roy et al., 2020) O(N+/N) v LP
Axial Transformer (Ho et al., 2019) O(N+VN) v FP
Compressive Transformer (Rae et al., 2020) O(N?) v RC
Sinkhorn Transformer (Tay et al., 2020b) O(B?) v LP
Longformer (Beltagy et al., 2020) O(n(k +m)) v FP+M
ETC (Ainslie et al., 2020) O(N? + NNy) X FP+M
Synthesizer (Tay et al., 2020a) O(N?) v LR+LP
Performer (Choromanski et al., 2020a) O(N) v KR
Funnel Transformer (Dai et al., 2020) O(N?) v FP+DS

Table 1: Summary of Efficient Transformer Models. Models in the first section are mainly
efficient attention methods. Models in the subsequent lower section generally refer to sparse
models. Class abbreviations include: FP = Fixed Patterns or Combinations of Fixed Pat-
terns, M = Memory, LP = Learnable Pattern, LR = Low-Rank, KR = Kernel RC =
Recurrence, and DS = Downsampling. Furthermore, N generally refers to the sequence
length and B is the local window (or block) size. N, and N, denote global model memory
length and convolutionally-compressed sequence lengths respectively.
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e Fixed Patterns (FP) - The earliest modifications to self-attention simply sparsifies
the attention matrix by limiting the field of view to fixed, predefined patterns such as
local windows and block patterns of fixed strides.

— Blockwise Patterns The simplest example of this technique in practice is the
blockwise (or chunking) paradigm which considers blocks of local receptive fields
by chunking input sequences into fixed blocks. Examples of models that do
this include Blockwise (Qiu et al., 2019) and /or Local Attention (Parmar et al.,
2018). Chunking input sequences into blocks reduces the complexity from N? to
B? (block size) with B << N, significantly reducing the cost. These blockwise
or chunking methods serve as a basis for many more complex models.

— Strided Patterns Another approach is to consider strided attention patterns,
i.e., only attending at fixed intervals. Models such as Sparse Transformer (Child

et al., 2019) and/or Longformer (Beltagy et al., 2020) employ strided or “dilated”
windows.

— Compressed Patterns - Another line of attack here is to use some pooling
operator to down-sample the sequence length to be a form of fixed pattern. For
instance, Compressed Attention (Liu et al., 2018) uses strided convolution to
eftectively reduce the sequence length.



e Recurrence - A natural extension to the blockwise method is to connect these blocks
via recurrence. Transformer-XL (Dai et al., 2019) proposed a segment-level recurrence
mechanism that connects multiple segments and blocks. These models can, in some
sense, be viewed as fized pattern models. However, we decided to create its own
category due to its deviation from other block / local approaches.



e Combination of Patterns (CP) - The key idea of combined? approaches is to
improve coverage by combining two or more distinct access patterns. For example,
the Sparse Transformer (Child et al., 2019) combines strided and local attention by
assigning half of its heads to each pattern. Similarly, Axial Transformer (Ho et al.,
2019) applies a sequence of self-attention computations given a high dimensional tensor
as input, each along a single axis of the input tensor. In essence, the combination
of patterns reduces memory complexity in the same way that fixed patterns does.
The difterence, however, is that the aggregation and combinaton of multiple patterns
improves the overall coverage of the self-attention mechanism.



e Learnable Patterns (LP) - An extension to fixed, pre-determined pattern are learn-
able ones. Unsurprisingly, models using learnable patterns aim to learn the access
pattern in a data-driven fashion. A key characteristic of learning patterns is to deter-
mine a notion of token relevance and then assign tokens to buckets or clusters (Vyas
et al., 2020; Wang et al., 2020b). Notably, Reformer (Kitaev et al., 2020) introduces
a hash-based similarity measure to efficiently cluster tokens into chunks. In a simlar

vein, the Routing Transformer (Roy et al., 2020) employs online k-means clustering
on the tokens. Meanwhile, the Sinkhorn Sorting Network (Tay et al., 2020b) exposes
the sparsity in attention weights by learning to to sort blocks of the input sequence.
In all these models, the similarity function is trained end-to-end jointly with the rest
of the network. The key idea of learnable patterns is still to exploit fixed patterns
(chunked patterns). However, this class of methods learns to sort/cluster the input
tokens - enabling a more optimal global view of the sequence while maintaining the
efficiency benefits of fixed patterns approaches.



e Low-Rank Methods - Another emerging technique is to improve efficiency by lever-
aging low-rank approximations of the self-attention matrix. The key idea is to assume
low-rank structure in the N x N matrix. The Linformer (Wang et al., 2020c) is a
classic example of this technique, as it projects the length dimension of keys and
values to a lower-dimensional representation (N — k). It is easy to see that the low-
rank method ameliorates the memory complexity problem of self-attention because
the N x N matrix is now decomposed to N X k.



e Kernels - Another recently popular method to improve the efficiency of Transform-
ers is to view the attention mechanism through kernelization. The usage of ker-
nels (Katharopoulos et al., 2020; Choromanski et al., 2020a) enable clever mathe-
matical re-writing of the self-attention mechanism to avoid explicitly computing the
N x N matrix. Since kernels are a form of approximation of the attention matrix,
they can be also viewed as a type of low-rank approach (Choromanski et al., 2020a).
Examples of recent work in this area include Performers, Linear Transformers and

Random Feature Attention (RFA, (Peng et al., 2021))



Long-range Arena (LRA) dataset

56
~ .IBig Bird

N Transformer

) Synthesizer

© 52 . Performer
-t Llnformerr \
O @& &)
b ( )Reformer Sinkhorn 0
< 50 Linear Transformer
'
o
48

Local Attention
46 (-

44
50 100 150 200 250 300 350

Speed (examples per sec)

Figure 3: Performance (y axis), speed (x axis),
and memory footprint (size of the circles) of dif-
ferent models.



Sparsifying Attention

local
attention

graph
attention

iInput
sequence
A

N oA OON-=-O

0123456 7

A

attention heat map

https://iclr.cc/virtual/2021/session/4343



https://iclr.cc/virtual/2021/session/4343

(a) Full n? attention (b) Sliding window attention (¢) Dilated sliding window (d) Global+sliding window
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(a) Random attention (b) Window attention (c) Global Attention (d) BIGBIRD
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Rotary Position Embeddings The rotary method was introduced by Su et al. (2021) and has
recently been popularized by the open source GPT-3 (Brown et al., 2020) implementation GPT-
J (Wang & Komatsuzaki, 2021). Instead of adding sinusoidal embeddings at the bottom of the
transformer, they multiply the keys and queries of every attention layer by sinusoidal embeddings.

Unlike the sinusoidal or learned positional embedding approach, the rotary method i1njects position
information into the model at every layer, not just at the i1nitial one. In addition, 1t adds no position
information to the values of the self-attention sublayer. The output of a self-attention sublayer 1s a
linearly transformed, weighted sum of the input value vectors; therefore, by not inserting position
information into the values, the outputs of each transformer-layer contain no explicit position infor-
mation. We suspect that this segregation of position information may be beneficial for extrapolation,
and we draw 1nspiration from it in the design of our method (§3).
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TS Bias Though most models use trained or sinusoidal position embeddings, the TS model of Raf-
fel et al. (2020) uses a relative position method (Shaw et al., 2018; Huang et al., 2019) that adds no
position information to word embeddings (as in the previous method). Instead, it modifies the way
attention values are computed. We refer to this as the “TS bias” methodl6 To compute attention
values 1in the unmodified transformer, we compute the dot product of every query with every rele-
vant key and then softmax these attention values. In this method, we compute the attention values
as before, but then we add a learned, shared bias to each query-key score that 1s dependent on just
the distance between the query and key. Therefore, all query-key scores where the query and key
distance are zero (1.e., the query and key represent the same token) get a specific learned bias, all
scores where the query and key are one word away get a different learned bias, and so on, up to a
certain point, from where multiple different distances share the same learned bias (which might be
beneficial for extrapolation). As in the rotary method, the TS bias 1injects position information into
the model at every layer and integrates no explicit position information into the self-attention value
vectors.
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perplexities and runtimes, see Tables @andmin the appendix.




We therefore introduce Attention with Linear Biases (ALi1B1) to facilitate efficient extrapolation.
AL1B1 negatively biases attention scores with a linearly decreasing penalty proportional to the dis-
tance between the relevant key and query. Our simple approach eliminates position embeddings.

Compared to a sinusoidal model trained on the same input length, our method requires no additional
runtime or parameters and incurs a negligible (0-0.7%) memory increase. ALiB1 can be imple-
mented by changing only a few lines of existing transformer code.

Using AL1B1, a transformer LM can be trained on short-L sequences and therefore at much lower
cost, and it can still be reliably applied to long sequences at runtime. For example, a 1.3 billion
parameter LM trained on L = 1024 tokens with ALi1B1 achieves the same perplexity as a sinusoidal
model trained on L = 2048 when both are tested on sequences of 2048 tokens, even though our

model is 11% faster and uses 11% less memory.



Attention with Linear Biases (ALiBi)

. Attention for i” query q; €L IXd for j from 1 to L in each head and d is the head
dimension

» Given the first i keys K € | ixd (for an auto-regressive LM)

o Attention weights are softmax(ql-KT)

 ALIBI introduces two differences:

1. Do not add position embeddings at any point in the network

2. softmax(qK' +m-[—-(@G—1),...,—2,—1,0])
1 1 1

Set scalar m for each head as a geometric sequence, e.g. —,—, ..., —
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Attention with Linear Biases (ALiBi)
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Figure 3: When computing attention scores for each head, our linearly biased attention method, AL-
1B1, adds a constant bias (right) to each attention score (q; - k;, left). As in the unmodified attention
sublayer, the softmax function 1s then applied to these scores, and the rest of the computation 1s un-
modified. m is a head-specific scalar that is set and not learned throughout training. We show that
our method for setting m values generalizes to multiple text domains, models and training compute
budgets. When using AL1B1, we do not add positional embeddings at the bottom of the network.



10.2

Perplexity (<)
O
~

o
-

3.6

ALi1B1 Extrapolating on WikiText-103

Validation Input Length (L,4iq)

21.0 .o+ ALiBi,L =512
20.5 - ®  Sinusoidal, L = 512
T 20.0 : -=&=+ ALiBi, L = 1024
71951 . ®  Sinusoidal, L = 1024
% 19.0- .OQI- - ~+4-+ ALiBi, L = 1536
% 185 - e, e earanenra.. w ®  Sinusoidal, L = 1536
S 13.0- A A ALiBi, L = 2048
sl e » Sinusoidal, L = 2048
:L7.O ALiBi, L = 3072
U512 1024 1536 2048 3072 Sinusoidal, L = 3072
Validation Input Length (L,4iq)
Extrapolation, L = 512 Extrapolation, L = 1024
on CC100+RoBERTa 102 on CC100+RoBERTa
_____________________ Sinusoidal
1 e fi\ 9081 ¢+ e ALiBi1
! P Z
v 2 B
L 5 9.4 - e
. . e-‘ ‘x . /
Sinusoidal | &£ 9.0- -
------- ALiBi
. - . ' ' 8.6 — - ' - -
512 2500 5000 7500 10000 1024 2500 5000 7500 10000

Validation Input Length (L,qiq)




