Data Efficiency

NLP: Fall 2025

Shortformer: Better Language Modeling Using Shorter Inputs

Ofir Press^{1,2} Noah A. Smith^{1,3} Mike Lewis²

¹Paul G. Allen School of Computer Science & Engineering, University of Washington

²Facebook AI Research

³Allen Institute for AI

ofirp@cs.washington.edu

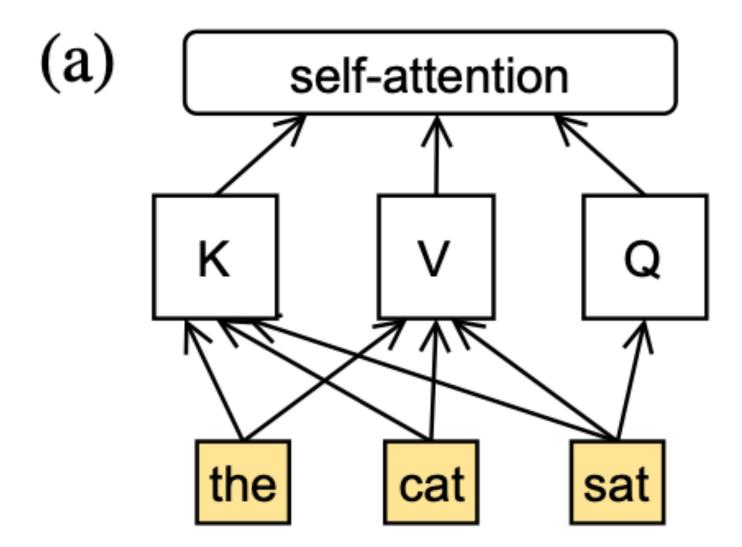
https://aclanthology.org/2021.acl-long.427/

ShortFormer

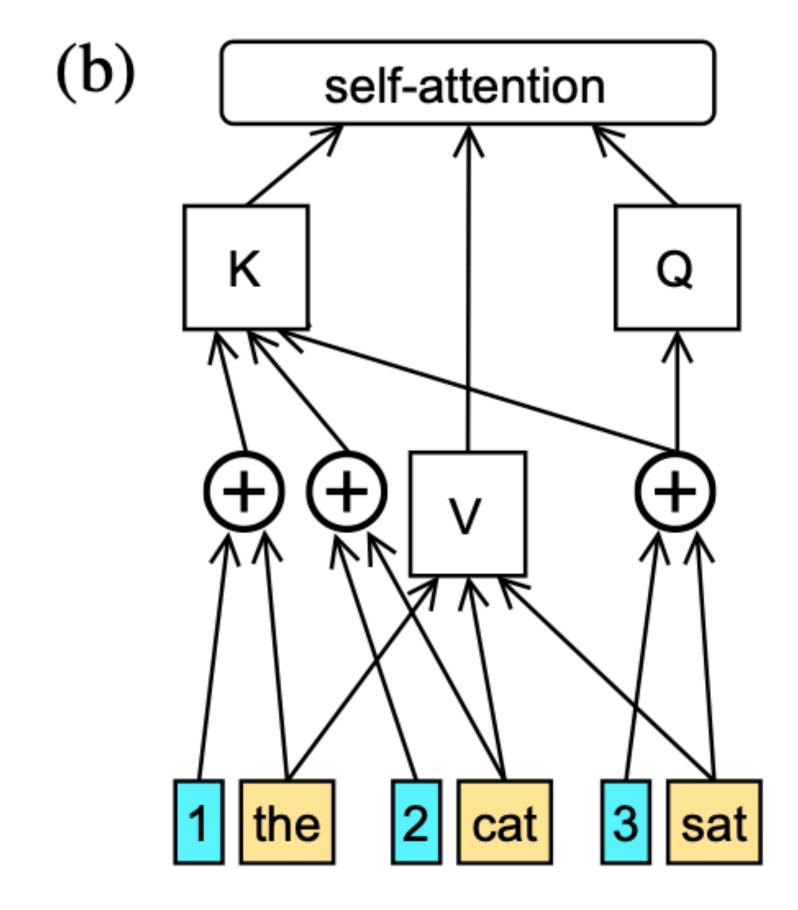
- Staged Training aka Curriculum Learning
 - Training on shorter subsequences (before moving on to longer ones) leads to faster and more memory-efficient training. Also improves perplexity.

Position infused Attention

- Transformer XL used cached previously evaluated sequences using relative position embeddings to scale to longer inputs
- Instead of adding absolute position embeddings to the tokens, add positional embeddings directly into the attention layer (keys and queries)
- Get rid of position embeddings at the token level

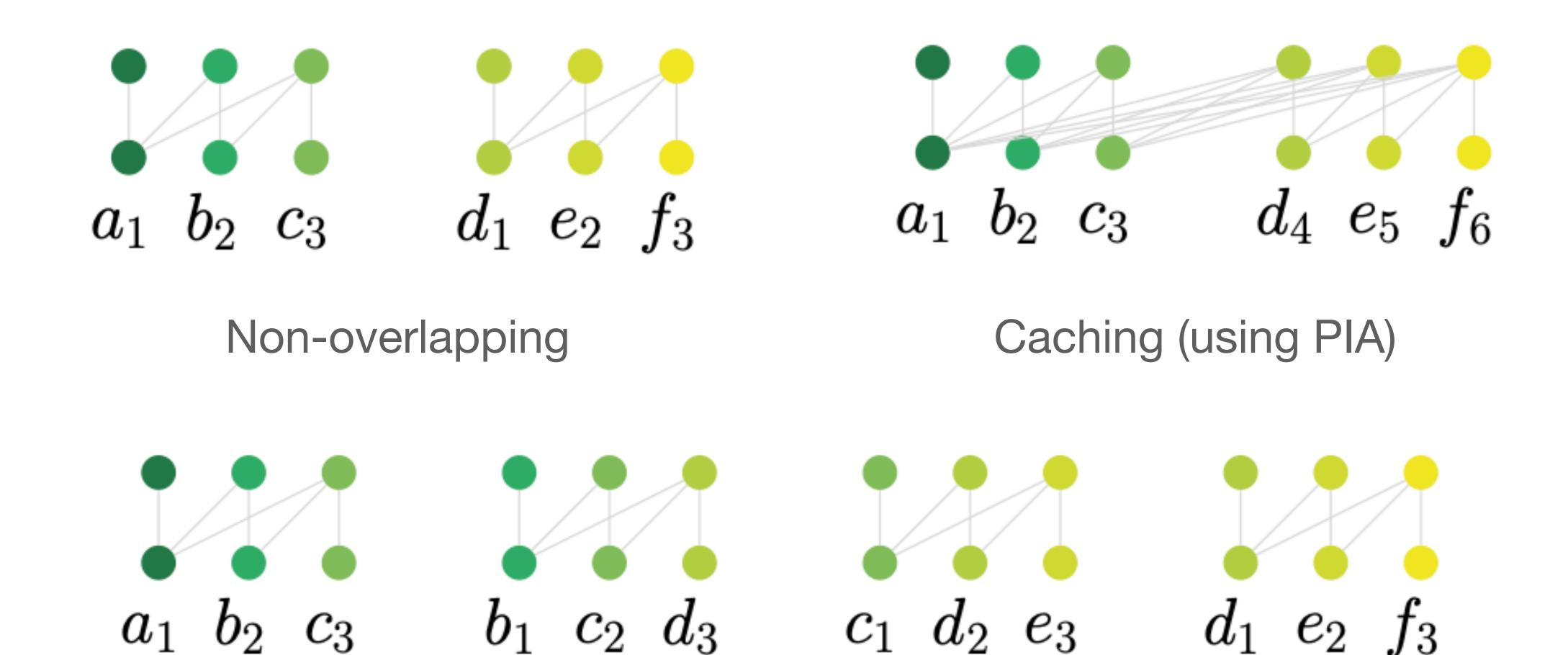


Standard Attention



Position Infused Attention (enables caching)

Train on short; inference on long



Sliding window with stride S=1

	Train		Infe	rence		
Subseq.		Nonoverlapping		Sliding Window (Token-by-token		
Length.	Speed ↑	PPL↓	Speed ↑	PPL ↓	Speed ↑	
32	28.3k	35.37	2.4k	24.98	74	
64	28.5k	28.03	4.8k	21.47	69	
128	28.9k	23.81	9.2k	19.76	70	
256	28.1k	21.45	14.8k	18.86	63	
512	26.1k	20.10	18.1k	18.41	37	
1024	22.9k	19.11	18.3k	17.97	18	
1536	18.4k	19.05	17.1k	18.14	11	
3072	13.9k	18.65	14.7k	17.92	5	

First Stage	Train	Inference
Subseq. Length	Speed ↑	PPL \
32	21.6k	17.66
64	22.6k	17.56
128	22.9k	17.47
256	22.5k	17.50
PIA + Cache w/o Staged Training	21.5k	17.85

		Train	Infe	erence (T	est)
Model	Param. ↓	Speed ↑	Mode	Speed ↑	PPL ↓
Baseline	247M	13.9k	N.o. S.W.	14.7k 2.5k	19.40 18.70
TransformerXL*	257M	6.0k			18.30
Sandwich T.	247M	13.9k	S.W.	2.5k	17.96
Compressive T.	329M	_	N.o.	_	17.1
Routing T.	_	_	N.o	_	15.8
kNN-LM**	247M	13.9k	S.W.	145	15.79
PIA + Caching	247M	21.5k	N.o.	14.5k	18.55
Staged Training	247M	17.6k	S.W.	2.5k	17.56
Shortformer	247M	22.9k	N.o.	14.5k	18.15

Do We Need to Create Big Datasets to Learn a Task?

Swaroop Mishra* Bhavdeep Sachdeva*

Department of Computer Science, Arizona State University {srmishr1, bssachde}@asu.edu

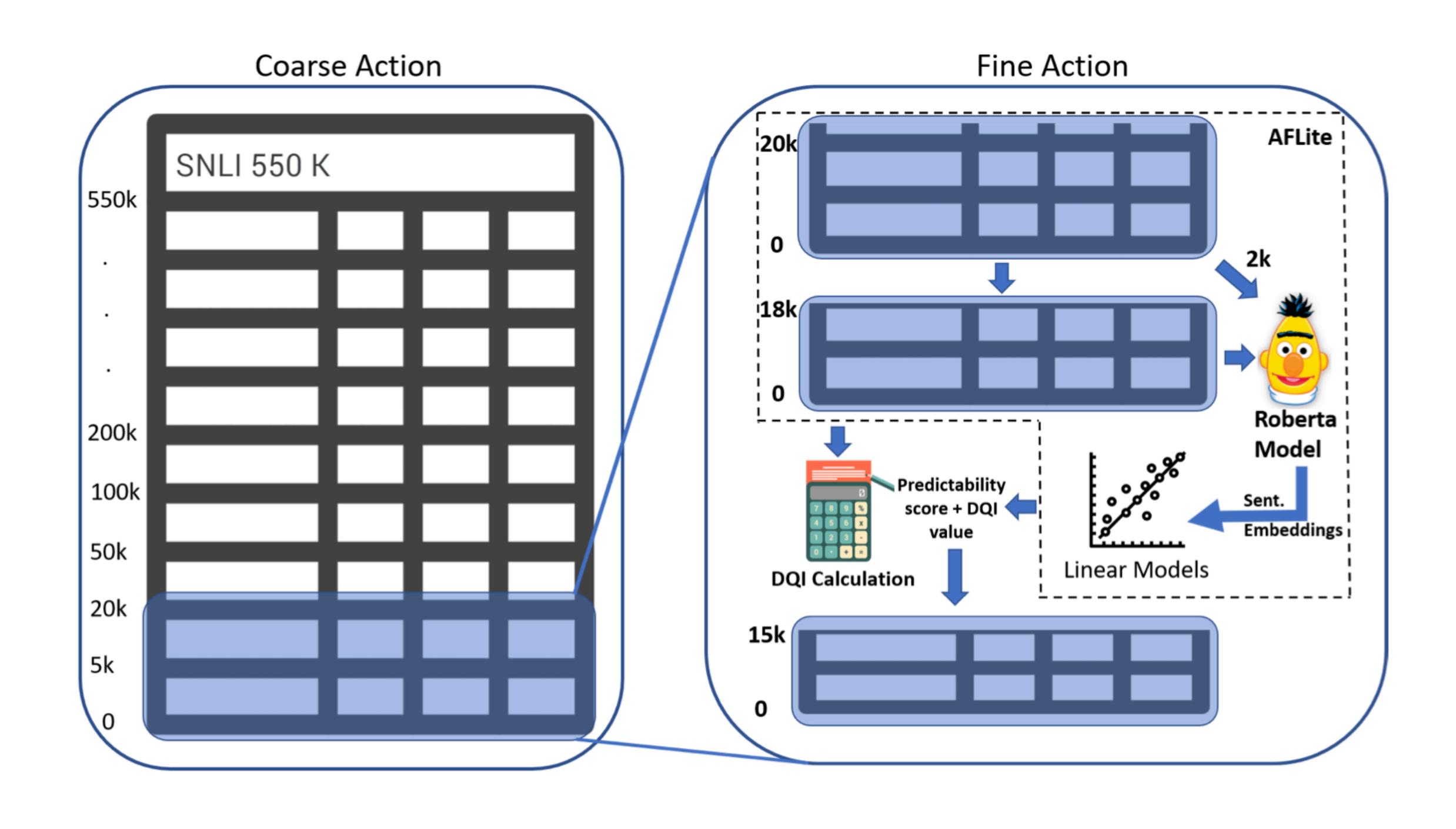
Active Learning for Fine-tuning LLMs

Coarse action

- Start with random a% of the data and calculate accuracy on heldout data
- Pick the best performing data and add b% and redo accuracy
- Continue adding b% of training data until accuracy on heldout data does not increase

Fine action

- For each training set, randomly drop 10%, randomly divide into train/test, sort by the Data Quality Index (DQI) for bias detection
- Short list the training data that scores greater than a threshold in DQI



Active Learning for Fine-tuning LLMs

- SNLI dataset
- a=5000; b=5000
- Coarse action finds 20K training examples
- Fine action can further reduce this to 5K-15K

Si	Size	Performance on IID test set
50	000	36.77
100	0000	77.45
150	5000	81.69
200	0000	84.69
250	5000	80.96
100 150 200	0000 5000 0000	77.45 81.69 84.69

550k	89.64
20k	84.69
5k	87.47
8k	87.54
10k	87.93
12k	88.56
15k	88.95
F	ine

IID Test

Size