Machine Translation Phrase-based Models 3 (Tuning)

Matthias Huck (based on slides by Philipp Koehn and Barry Haddow)

24 February 2014

Log-linear Model

• We've expressed translation using a probabilistic model:

$$e_{best} = argmax_e p(e|f)$$

• Our model is a weighted combination of many components

$$p(\mathbf{e}|\mathbf{f}) \propto \exp \sum_{k=1}^{m} \lambda_k \cdot h_k(\mathbf{e}, \mathbf{f})$$

where $h_k(\mathbf{e}, \mathbf{f})$ are *feature functions* such as

- translation and language model log-probabilities
- phrase and word counts
- etc.

and λ_k are weights.

Feature Weights

- Contribution of feature h_k determined by weight λ_k
- Methods for setting the feature weights:
 - manually try a few, take best
 - automatically tune with an optimization algorithm
- How to learn weights
 - set aside a development corpus
 - set the weights, so that optimal translation performance on this development corpus is achieved
 - requires *automatic scoring* method

Weight Optimization

• Setting the feature weights is an optimization problem:

$$\Lambda_{\mathsf{best}} = \mathsf{argmax}_{\Lambda} G(E, T_{\Lambda}(F))$$

- ullet Find weight vector $\Lambda_{\mathsf{best}} = (\lambda_1' \cdots \lambda_m')$ that maximizes some **gain function** G
- The gain function G compares a set of reference sentences E to a set of translated sentences $T_{\Lambda}(F)$
- Which gain function? Our evaluation metric (BLEU)!

Discriminative vs. Generative Models

Generative models

- translation process is broken down into steps
- each step is modeled by a probability distribution
- each probability distribution is estimated from the data by maximum likelihood

Discriminative models

- model consists of a number of features
- each feature has a weight, measuring its value for judging a translation as correct
- supervised learning: directly tune model parameters (feature weights) towards optimal performance wrt. the evaluation metric on development data

Discriminative Training (1)

- Employ development corpus
 - different from training corpus for phrase extraction
 - small (maybe 2000 sentences)
 - different from the held-out test set which is used to finally evaluate the translation quality
- Translate development corpus using model with current feature weights, output N-best list of translations ($N=100,1000,\ldots$)
- Evaluate translations with the gain function
- Adjust feature weights to increase the gain
- *Iterate* translation, evaluation, and adjustment of feature weights for a number of times

Discriminative Training (2)

Optimization on N-best Lists (1)

- Task: find weights so that the model ranks best translations first
- Input: er geht ja nicht nach Hause, Ref: he does not go home

Translation	Feature values		Model score	Gain
it is not under house	-2	-2	-0.6	0.2
he is not to go home	-0.5	-3	-0.65	0.33
he does not go home	-4	-1.5	-0.7	1.0
it is not packing	-3	-3	-0.9	0.0
he is not for home	-5	-6	-1.7	0.2

$$\lambda_1 = 0.1, \quad \lambda_2 = 0.2$$

Optimization on N-best Lists (2)

- Task: find weights so that the model ranks best translations first
- Input: er geht ja nicht nach Hause, Ref: he does not go home

Translation	Feature values		Model score	Gain
it is not under house	-2	-2	-0.7	0.2
he is not to go home	-0.5	-3	-0.925	0.33
he does not go home	-4	-1.5	-0.65	1.0
it is not packing	-3	-3	-1.05	0.0
he is not for home	-5	-6	-2.05	0.2

$$\lambda_1 = 0.05, \quad \lambda_2 = 0.3$$

Och's Minimum Error Rate Training (MERT)

- ullet Given a set of N-best lists, how to adjust weights?
- Line search for best feature weights [Och, 2003]

```
given: sentences with N-best list of translations iterate n times randomize starting feature weights iterate until convergences for each feature find best feature weight update if different from current return best feature weights found in any iteration
```

MERT: Adjusting Feature Weights (1)

• The model score for a given hypothesis/source pair (e, f) is:

$$score(\mathbf{e}, \mathbf{f}) = \sum_{k=1}^{m} \lambda_i \cdot h_k(\mathbf{e}, \mathbf{f})$$

• If we're only interested in one single weight λ_c , $1 \le c \le m$, we can write

$$score(\mathbf{e}, \mathbf{f}) = \lambda_c \cdot h_c(\mathbf{e}, \mathbf{f}) + \sum_{k \neq c} \lambda_k \cdot h_k(\mathbf{e}, \mathbf{f})$$

which is of the form

$$score(\mathbf{e}, \mathbf{f}) = A\lambda_c + B$$

MERT: Adjusting Feature Weights (2)

ullet So the model score of each hypothesis in each N-best list is a *linear in a single weight* if we keep all other weights fixed

Core task:

- find optimal value for one parameter weight λ_c
- . . . while leaving all other weights constant

• Recall that:

- we deal with 1000s of input sentences f in the development set
- we deal with 100s of translations e per input sentence
- we are trying to find the value λ_c so that over all sentences, the gain is optimized

MERT: Adjusting Feature Weights (3)

- Each translation from the N-best list contributes a line
- The model-best translation only changes at upper intersection points
- Evaluate gain of segments on upper envelope
- ullet Set λ_c to a value within the interval with the highest gain

MERT: Assessment

Advantages

- Widely used, and several implementations available
- Can be (and is) used with a variety of metrics
- Converges in "reasonable" time

• Disadvantages

- Only scales to 20-30 features
- Stochastic algorithm variable results
- N-best lists give very limited view

Pairwise Ranked Optimisation (PRO)

- An alternative: Pairwise Ranked Optimisation (PRO) [Hopkins and May, 2011]
- Treats the optimization as a classification problem
- Idea: We want the ranking induced by the model score function to be the same as by the gain function:

$$score(\mathbf{e}_i, \mathbf{f}) > score(\mathbf{e}_j, \mathbf{f}) \Leftrightarrow G(\{\hat{\mathbf{e}}\}, \{\mathbf{e}_i\}) > G(\{\hat{\mathbf{e}}\}, \{\mathbf{e}_j\}), \forall 1 \leq i, j \leq N$$

• G() is a sentence-level version of BLEU, \hat{e} denotes a reference sentence

Ranking as Classification (1)

• Binary classifier (e.g. logistic regression) maps vectors to boolean

Ranking as Classification (2)

- Sample e_i, e_j with feature vectors $h(e_i), h(e_j)$ from N-best list
- Add two examples to classifier training set for each sample

PRO: Assessment

Advantages

- Scales to large numbers of features
- More stable than MERT
- Easy to implement

Disadvantages

- Uses sentence-level BLEU different length penalty
- Gives worse results for out-of-English
- Still tied to N-best lists

Other Approaches

- Online learning [Chiang et al. 2008; Liang et al. 2006]
- Expected BLEU training [Smith and Eisner, 2006; Arun et al, 2010]
- Lattice MERT [Macherey et al, 2008]

Summary

- The role of tuning
 - optimize feature weights to maximize a gain function
 - on a development corpus
 - typically with N-best lists
- Methods
 - Minimum Error Rate Training (MERT)
 - Pairwise Ranked Optimisation (PRO)