
Machine Translation
Phrase-based Models 3 (Tuning)

Matthias Huck
(based on slides by Philipp Koehn and Barry Haddow)

24 February 2014

Matthias Huck Machine Translation 24 February 2014



1

Log-linear Model

• We’ve expressed translation using a probabilistic model:

ebest = argmaxe p(e|f)
• Our model is a weighted combination of many components

p(e|f) ∝ exp

m∑
k=1

λk · hk(e, f)

where hk(e, f) are feature functions such as

– translation and language model log-probabilities
– phrase and word counts
– etc.

and λk are weights.
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Feature Weights

• Contribution of feature hk determined by weight λk

• Methods for setting the feature weights:

– manually — try a few, take best
– automatically — tune with an optimization algorithm

• How to learn weights

– set aside a development corpus
– set the weights, so that optimal translation performance on this

development corpus is achieved
– requires automatic scoring method
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Weight Optimization

• Setting the feature weights is an optimization problem:

Λbest = argmaxΛG(E, TΛ(F ))

• Find weight vector Λbest = (λ′1 · · ·λ′m) that maximizes some gain function G

• The gain function G compares a set of reference sentences E to a set of
translated sentences TΛ(F )

• Which gain function? Our evaluation metric (bleu)!
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Discriminative vs. Generative Models

• Generative models

– translation process is broken down into steps
– each step is modeled by a probability distribution
– each probability distribution is estimated from the data by maximum likelihood

• Discriminative models

– model consists of a number of features
– each feature has a weight, measuring its value for judging a translation as

correct
– supervised learning: directly tune model parameters (feature weights)

towards optimal performance wrt. the evaluation metric on development
data
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Discriminative Training (1)

• Employ development corpus

– different from training corpus for phrase extraction
– small (maybe 2000 sentences)
– different from the held-out test set which is used to finally evaluate the

translation quality

• Translate development corpus using model with current feature weights,
output N -best list of translations (N = 100, 1000, . . .)

• Evaluate translations with the gain function

• Adjust feature weights to increase the gain

• Iterate translation, evaluation, and adjustment of feature weights
for a number of times
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Discriminative Training (2)
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Optimization on N-best Lists (1)

• Task: find weights so that the model ranks best translations first

• Input: er geht ja nicht nach Hause, Ref: he does not go home

Translation Feature values Model score Gain

it is not under house -2 -2 -0.6 0.2

he is not to go home -0.5 -3 -0.65 0.33

he does not go home -4 -1.5 -0.7 1.0

it is not packing -3 -3 -0.9 0.0

he is not for home -5 -6 -1.7 0.2

λ1 = 0.1, λ2 = 0.2
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Optimization on N-best Lists (2)

• Task: find weights so that the model ranks best translations first

• Input: er geht ja nicht nach Hause, Ref: he does not go home

Translation Feature values Model score Gain

it is not under house -2 -2 -0.7 0.2

he is not to go home -0.5 -3 -0.925 0.33

he does not go home -4 -1.5 -0.65 1.0

it is not packing -3 -3 -1.05 0.0

he is not for home -5 -6 -2.05 0.2

λ1 = 0.05, λ2 = 0.3

Matthias Huck Machine Translation 24 February 2014



9

Och’s Minimum Error Rate Training (MERT)

• Given a set of N -best lists, how to adjust weights?

• Line search for best feature weights [Och, 2003]
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given: sentences with N-best list of translations

iterate n times

randomize starting feature weights

iterate until convergences

for each feature

find best feature weight

update if different from current

return best feature weights found in any iteration
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MERT: Adjusting Feature Weights (1)

• The model score for a given hypothesis/source pair (e, f) is:

score(e, f) =

m∑
k=1

λi · hk(e, f)

• If we’re only interested in one single weight λc, 1 ≤ c ≤ m, we can write

score(e, f) = λc · hc(e, f) +
∑
k 6=c

λk · hk(e, f)

which is of the form
score(e, f) = Aλc +B
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MERT: Adjusting Feature Weights (2)

• So the model score of each hypothesis in each N -best list is a linear in a single
weight if we keep all other weights fixed

• Core task:

– find optimal value for one parameter weight λc
– . . . while leaving all other weights constant

• Recall that:

– we deal with 1000s of input sentences f in the development set
– we deal with 100s of translations e per input sentence
– we are trying to find the value λc so that over all sentences,

the gain is optimized
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MERT: Adjusting Feature Weights (3)
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• Each translation from the N -best list contributes a line
• The model-best translation only changes at upper intersection points
• Evaluate gain of segments on upper envelope
• Set λc to a value within the interval with the highest gain
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MERT: Assessment

• Advantages

– Widely used, and several implementations available
– Can be (and is) used with a variety of metrics
– Converges in “reasonable” time

• Disadvantages

– Only scales to 20-30 features
– Stochastic algorithm – variable results
– N -best lists give very limited view
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Pairwise Ranked Optimisation (PRO)

• An alternative: Pairwise Ranked Optimisation (PRO) [Hopkins and May, 2011]

• Treats the optimization as a classification problem

• Idea: We want the ranking induced by the model score function to be the
same as by the gain function:

score(ei, f) > score(ej, f)⇔ G({ê}, {ei}) > G({ê}, {ej}),∀1 ≤ i, j ≤ N

• G() is a sentence-level version of bleu, ê denotes a reference sentence
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Ranking as Classification (1)

{x1, . . . , xm} ∈ Rm

y ∈ {0, 1}

• Binary classifier (e.g. logistic regression) maps vectors to boolean
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Ranking as Classification (2)

h(ei)− h(ej)

sgn(G(ei)−G(ej))

h(ej)− h(ei)

sgn(G(ej)−G(ei))

• Sample ei, ej with feature vectors h(ei),h(ej) from N -best list

• Add two examples to classifier training set for each sample
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PRO: Assessment

• Advantages

– Scales to large numbers of features
– More stable than MERT
– Easy to implement

• Disadvantages

– Uses sentence-level bleu – different length penalty
– Gives worse results for out-of-English
– Still tied to N -best lists
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Other Approaches

• Online learning [Chiang et al. 2008; Liang et al. 2006]

• Expected bleu training [Smith and Eisner, 2006; Arun et al, 2010]

• Lattice MERT [Macherey et al, 2008]
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Summary

• The role of tuning

– optimize feature weights to maximize a gain function
– on a development corpus
– typically with N -best lists

• Methods

– Minimum Error Rate Training (MERT)
– Pairwise Ranked Optimisation (PRO)
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