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1 Introduction

This note describes the forward-backward algorithm. The forward-backward algo-
rithm has very important applications to both hidden Markov models (HMMs) and
conditional random fields (CRFs). It is a dynamic programming algorithm, and is
closely related to the Viterbi algorithm for decoding with HMMs or CRFs.

This note describes the algorithm at a level of abstraction that applies to both
HMMs and CRFs. We will also describe its specific application to these cases.

2 The Forward-Backward Algorithm

The problem set-up is as follows. Assume that we have some sequence length m,
and some set of possible states S. For any state sequence s1 . . . sm where each
si ∈ S, we define the potential for the sequence as

ψ(s1 . . . sm) =
m∏
j=1

ψ(sj−1, sj , j)

Here we define s0 to be *, where * is a special start symbol in the model. Here
ψ(s, s′, j) ≥ 0 for s, s′ ∈ S, j ∈ {1 . . .m} is a potential function, which returns a
value for the state transition s to s′ at position j in the sequence.

The potential functions ψ(sj−1, sj , j) might be defined in various ways. As
one example, consider an HMM applied to an input sentence x1 . . . xm. If we
define

ψ(s′, s, j) = t(s|s′)e(xj |s)

then

ψ(s1 . . . sm) =
m∏
j=1

ψ(sj−1, sj , j)

=
m∏
j=1

t(sj |sj−1)e(xj |sj)
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= p(x1 . . . xm, s1 . . . sm)

where p(x1 . . . xm, s1 . . . sm) is the probability mass function under the HMM.
As another example, consider a CRF where we have a feature-vector definition

φ(x1 . . . xm, s
′, s, j) ∈ Rd, and a parameter vector w ∈ Rd. Assume again that we

have an input sentence x1 . . . xm. If we define

ψ(s′, s, j) = exp
(
w · φ(x1 . . . xm, s′, s, j)

)
then

ψ(s1 . . . sm) =
m∏
j=1

ψ(sj−1, sj , j)

=
m∏
j=1

exp
(
w · φ(x1 . . . xm, sj−1, sj , j)

)

= exp

 m∑
j=1

w · φ(x1 . . . xm, sj−1, sj , j)


Note in particular, by the model form for CRFs, it follows that

p(s1 . . . sm|x1 . . . xm) =
ψ(s1 . . . sm)∑

s1...sm ψ(s1 . . . sm)

The forward-backward algorithm is shown in figure 1. Given inputs consisting
of a sequence lengthm, a set of possible states S, and potential functions ψ(s′, s, j)
for s, s′ ∈ S, and j ∈ {1 . . .m}, it computes the following quantities:

1. Z =
∑

s1...sm ψ(s1 . . . sm).

2. For all j ∈ {1 . . .m}, a ∈ S,

µ(j, a) =
∑

s1...sm:sj=a

ψ(s1 . . . sm)

3. For all j ∈ {1 . . . (m− 1)}, a, b ∈ S,

µ(j, a, b) =
∑

s1...sm:sj=a,sj+1=b

ψ(s1 . . . sm)
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Inputs: Length m, set of possible states S , function ψ(s, s′, j). Define * to be a
special initial state.
Initialization (forward terms): For all s ∈ S,

α(1, s) = ψ(*, s, 1)

Recursion (forward terms): For all j ∈ {2 . . .m}, s ∈ S,

α(j, s) =
∑
s′∈S

α(j − 1, s′)× ψ(s′, s, j)

Initialization (backward terms): For all s ∈ S,

β(m, s) = 1

Recursion (backward terms): For all j ∈ {1 . . . (m− 1)}, s ∈ S,

β(j, s) =
∑
s′∈S

β(j + 1, s′)× ψ(s, s′, j + 1)

Calculations:
Z =

∑
s∈S

α(m, s)

For all j ∈ {1 . . .m}, a ∈ S,

µ(j, a) = α(j, a)× β(j, a)

For all j ∈ {1 . . . (m− 1)}, a, b ∈ S,

µ(j, a, b) = α(j, a)× ψ(a, b, j + 1)× β(j + 1, b)

Figure 1: The forward-backward algorithm.
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3 Application to CRFs

The quantities computed by the forward-backward algorithm play a central role in
CRFs. First, consider the problem of calculating the conditional probability

p(s1 . . . sm|x1 . . . xm) =
exp

(∑m
j=1w · φ(x1 . . . xm, sj−1, sj , j)

)
∑

s1...sm exp{
(∑m

j=1w · φ(x1 . . . xm, sj−1, sj , j)
)

The numerator in the above expression is easy to compute; the denominator is
more challenging, because it requires a sum over an exponential number of state
sequences. However, if we define

ψ(s′, s, j) = exp
(
w · φ(x1 . . . xm, s′, s, j)

)
in the algorithm in figure 1, then as we argued before we have

ψ(s1 . . . sm) = exp

 m∑
j=1

w · φ(x1 . . . xm, sj−1, sj , j)


It follows that the quantity Z calculated by the algorithm is equal to the denomina-
tor in the above expression; that is,

Z =
∑

s1...sm

exp

 m∑
j=1

w · φ(x1 . . . xm, sj−1, sj , j)


Next, recall that the key difficulty in the calculation of the gradient of the log-

likelihood function in CRFs was to calculate the terms

qij(a, b) =
∑

s:sj−1=a,sj=b

p(s|xi;w)

for a given input sequence xi = xi1 . . . x
i
m, for each j ∈ {2 . . .m}, for each a, b ∈

S (see the note on log-linear models). Again, if we define

ψ(s′, s, j) = exp
(
w · φ(xi1 . . . xim, s′, s, j)

)
then it can be verified that

qij(a, b) =
µ(j, a, b)

Z

where µ(j, a, b) and Z are the terms computed by the algorithm in figure 1.
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