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Tf-idf and PPMI are 
sparse representations

tf-idf and PPMI vectors are
◦long (length |V|= 20,000 to 50,000)
◦sparse (most elements are zero)



Alternative: dense vectors

vectors which are
◦ short (length 50-1000)
◦dense (most elements are non-zero)
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Sparse versus dense vectors
Why dense vectors?
◦ Short vectors may be easier to use as features in machine 

learning (less weights to tune)
◦ Dense vectors may generalize better than storing explicit 

counts
◦ They may do better at capturing synonymy:

◦ car and automobile are synonyms; but are distinct dimensions
◦ a word with car as a neighbor and a word with automobile as a 

neighbor should be similar, but aren't
◦ In practice, they work better
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Dense embeddings you can 
download!

Word2vec (Mikolov et al.)
https://code.google.com/archive/p/word2vec/
Fasttext http://www.fasttext.cc/

Glove (Pennington, Socher, Manning)
http://nlp.stanford.edu/projects/glove/

https://code.google.com/archive/p/word2vec/
http://www.fasttext.cc/
http://nlp.stanford.edu/projects/glove/


Word2vec

Popular embedding method
Very fast to train
Code available on the web
Idea: predict rather than count 



Word2vec

◦Instead of counting how often each 
word w occurs near "apricot"

◦Train a classifier on a binary 
prediction task:
◦ Is w likely to show up near "apricot"?

◦We don’t actually care about this task
◦But we'll take the learned classifier weights 
as the word embeddings



Brilliant insight: Use running text as 
implicitly supervised training data!

• A word s near apricot 
• Acts as gold ‘correct answer’ to the 

question 
• “Is word w likely to show up near apricot?” 
• No need for hand-labeled supervision
• The idea comes from neural language 

modeling 
• Bengio et al. (2003)
• Collobert et al. (2011) 



Word2Vec: Skip-Gram Task

Word2vec provides a variety of options. Let's do
◦ "skip-gram with negative sampling" (SGNS)



Skip-gram algorithm
1. Treat the target word and a neighboring 

context word as positive examples.
2. Randomly sample other words in the 

lexicon to get negative samples
3. Use logistic regression to train a classifier 

to distinguish those two cases
4. Use the weights as the embeddings

9/7/18
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Skip-Gram Training Data
Training sentence:
... lemon, a tablespoon of apricot jam   a pinch ... 

c1            c2   target c3    c4

9/7/18
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Asssume context words are those in +/- 2 
word window



Skip-Gram Goal

Given a tuple (t,c)  = target, context
◦ (apricot, jam)
◦ (apricot, aardvark)

Return probability that c is a real context word:

P(+|t,c)
P(−|t,c) = 1−P(+|t,c)

9/7/18
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How to compute p(+|t,c)?
Intuition:
◦ Words are likely to appear near similar words
◦ Model similarity with dot-product!
◦ Similarity(t,c)  ∝ t · c

Problem:
◦Dot product is not a probability!

◦ (Neither is cosine)



Turning dot product into a 
probability
The sigmoid lies between 0 and 1:
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6.7.1 The classifier
Let’s start by thinking about the classification task, and then turn to how to train.
Imagine a sentence like the following, with a target word apricot and assume we’re
using a window of ±2 context words:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

Our goal is to train a classifier such that, given a tuple (t,c) of a target word
t paired with a candidate context word c (for example (apricot, jam), or perhaps
(apricot, aardvark) it will return the probability that c is a real context word (true
for jam, false for aardvark):

P(+|t,c) (6.15)

The probability that word c is not a real context word for t is just 1 minus
Eq. 6.15:

P(�|t,c) = 1�P(+|t,c) (6.16)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on similarity: a word is likely to occur near
the target if its embedding is similar to the target embedding. How can we compute
similarity between embeddings? Recall that two vectors are similar if they have a
high dot product (cosine, the most popular similarity metric, is just a normalized dot
product). In other words:

Similarity(t,c)⇡ t · c (6.17)

Of course, the dot product t · c is not a probability, it’s just a number ranging
from 0 to •. (Recall, for that matter, that cosine isn’t a probability either). To turn
the dot product into a probability, we’ll use the logistic or sigmoid function s(x),
the fundamental core of logistic regression:

s(x) =
1

1+ e�x (6.18)

The probability that word c is a real context word for target word t is thus com-
puted as:

P(+|t,c) =
1

1+ e�t·c (6.19)

The sigmoid function just returns a number between 0 and 1, so to make it a
probability we’ll need to make sure that the total probability of the two possible
events (c being a context word, and c not being a context word) sum to 1.

The probability that word c is not a real context word for t is thus:

P(�|t,c) = 1�P(+|t,c)

=
e�t·c

1+ e�t·c (6.20)
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For all the context words:
Assume all context words are 
independent
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Equation 6.19 give us the probability for one word, but we need to take account
of the multiple context words in the window. Skip-gram makes the strong but very
useful simplifying assumption that all context words are independent, allowing us to
just multiply their probabilities:

P(+|t,c1:k) =
kY

i=1

1
1+ e�t·ci

(6.21)

logP(+|t,c1:k) =
kX

i=1

log
1

1+ e�t·ci
(6.22)

In summary, skip-gram trains a probabilistic classifier that, given a test target
word t and its context window of k words c1:k, assigns a probability based on how
similar this context window is to the target word. The probability is based on apply-
ing the logistic (sigmoid) function to the dot product of the embeddings of the target
word with each context word. We could thus compute this probability if only we
had embeddings for each word target and context word in the vocabulary. Let’s now
turn to learning these embeddings (which is the real goal of training this classifier in
the first place).

6.7.2 Learning skip-gram embeddings
Word2vec learns embeddings by starting with an initial set of embedding vectors
and then iteratively shifting the embedding of each word w to be more like the em-
beddings of words that occur nearby in texts, and less like the embeddings of words
that don’t occur nearby.

Let’s start by considering a single piece of the training data, from the sentence
above:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

This example has a target word t (apricot), and 4 context words in the L = ±2
window, resulting in 4 positive training instances (on the left below):

positive examples +
t c
apricot tablespoon
apricot of
apricot preserves
apricot or

negative examples -
t c t c
apricot aardvark apricot twelve
apricot puddle apricot hello
apricot where apricot dear
apricot coaxial apricot forever

For training a binary classifier we also need negative examples, and in fact skip-
gram uses more negative examples than positive examples, the ratio set by a param-
eter k. So for each of these (t,c) training instances we’ll create k negative samples,
each consisting of the target t plus a ‘noise word’. A noise word is a random word
from the lexicon, constrained not to be the target word t. The right above shows the
setting where k = 2, so we’ll have 2 negative examples in the negative training set
� for each positive example t,c.

The noise words are chosen according to their weighted unigram frequency
pa(w), where a is a weight. If we were sampling according to unweighted fre-
quency p(w), it would mean that with unigram probability p(“the”) we would choose



Skip-Gram Training Data
Training sentence:
... lemon, a tablespoon of apricot jam   a pinch ... 

c1              c2     t c3    c4

Training data: input/output pairs centering 
on apricot
Asssume a +/- 2 word window

9/7/18
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Skip-Gram Training
Training sentence:
... lemon, a tablespoon of apricot jam   a pinch ... 

c1              c2     t c3    c4
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•For each positive example, 
we'll create k negative 
examples.
•Using noise words
•Any random word that isn't t



Skip-Gram Training
Training sentence:
... lemon, a tablespoon of apricot jam   a pinch ... 

c1              c2     t c3    c4
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k=2



Choosing noise words

Could pick w according to their unigram frequency P(w)

More common to chosen then according to pα(w)

α= ¾ works well because it gives rare noise words slightly higher 
probability

To show this, imagine two events p(a)=.99 and p(b) = .01:
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the word the as a noise word, with unigram probability p(“aardvark”) we would
choose aardvark, and so on. But in practice it is common to set a = .75, i.e. use the
weighting p

3
4 (w):

Pa(w) =
count(w)a

P
w count(w)a (6.23)

Setting a = .75 gives better performance because it gives rare noise words
slightly higher probability: for rare words, Pa(w) > P(w). To visualize this intu-
ition, it might help to work out the probabilities for an example with two events,
P(a) = .99 and P(b) = .01:

Pa(a) =
.99.75

.99.75 + .01.75 = .97

Pa(b) =
.01.75

.99.75 + .01.75 = .03 (6.24)

Given the set of positive and negative training instances, and an initial set of
embeddings, the goal of the learning algorithm is to adjust those embeddings such
that we

• Maximize the similarity of the target word, context word pairs (t,c) drawn
from the positive examples

• Minimize the similarity of the (t,c) pairs drawn from the negative examples.

We can express this formally over the whole training set as:

L(q) =
X

(t,c)2+
logP(+|t,c)+

X

(t,c)2�
logP(�|t,c) (6.25)

Or, focusing in on one word/context pair (t,c) with its k noise words n1...nk, the
learning objective L is:

L(q) = logP(+|t,c)+
kX

i=1

logP(�|t,ni)

= logs(c · t)+
kX

i=1

logs(�ni · t)

= log
1

1+ e�c·t +
kX

i=1

log
1

1+ eni·t
(6.26)

That is, we want to maximize the dot product of the word with the actual context
words, and minimize the dot products of the word with the k negative sampled non-
neighbor words.

We can then use stochastic gradient descent to train to this objective, iteratively
modifying the parameters (the embeddings for each target word t and each context
word or noise word c in the vocabulary) to maximize the objective.

Note that the skip-gram model thus actually learns two separate embeddings
for each word w: the target embedding t and the context embedding c. Thesetarget

embedding
context

embedding embeddings are stored in two matrices, the target matrix T and the context matrix
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Setup
Let's represent words as vectors of some length (say 
300), randomly initialized. 

So we start with 300 * V random parameters

Over the entire training set, we’d like to adjust those 
word vectors such that we
◦ Maximize the similarity of the target word, context 

word pairs (t,c) drawn from the positive data
◦ Minimize the similarity of the (t,c) pairs drawn from 

the negative data. 

9/7/18
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Learning the classifier
Iterative process.
We’ll start with 0 or random weights
Then adjust the word weights to
◦ make the positive pairs more likely 
◦ and the negative pairs less likely

over the entire training set:



Objective Criteria
We want to maximize…

Maximize the + label for the pairs from the positive 
training data, and the – label for the pairs sample 
from the negative data.

9/7/18
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X

(t,c)2+

logP (+|t, c) +
X

(t,c)2�

logP (�|t, c)



Focusing on one target word t:
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We can express this formally over the whole training set as:

L(q) =
X

(t,c)2+
logP(+|t,c)+

X

(t,c)2�
logP(�|t,c) (6.25)

Or, focusing in on one word/context pair (t,c) with its k noise words n1...nk, the
learning objective L is:

L(q) = logP(+|t,c)+
kX

i=1

logP(�|t,ni)

= logs(c · t)+
kX

i=1

logs(�ni · t)

= log
1

1+ e�c·t +
kX

i=1

log
1

1+ eni·t
(6.26)

That is, we want to maximize the dot product of the word with the actual context
words, and minimize the dot products of the word with the k negative sampled non-
neighbor words.

We can then use stochastic gradient descent to train to this objective, iteratively
modifying the parameters (the embeddings for each target word t and each context
word or noise word c in the vocabulary) to maximize the objective.

Note that the skip-gram model thus actually learns two separate embeddings
for each word w: the target embedding t and the context embedding c. Thesetarget

embedding
context

embedding embeddings are stored in two matrices, the target matrix T and the context matrix
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Train using gradient descent
Actually learns two separate embedding matrices W and C

Can use W and throw away C, or merge them somehow



Summary: How to learn word2vec 
(skip-gram) embeddings
Start with V random 300-dimensional vectors as 
initial embeddings
Use logistic regression, the second most basic 
classifier used in machine learning after naïve 
bayes
◦ Take a corpus and take pairs of words that co-occur as 

positive examples
◦ Take pairs of words that don't co-occur as negative 

examples
◦ Train the classifier to distinguish these by slowly adjusting 

all the embeddings to improve the classifier performance
◦ Throw away the classifier code and keep the embeddings.



Evaluating embeddings
Compare to human scores on word 
similarity-type tasks:
• WordSim-353 (Finkelstein et al., 2002)

• SimLex-999 (Hill et al., 2015)

• Stanford Contextual Word Similarity (SCWS) dataset 
(Huang et al., 2012) 

• TOEFL dataset: Levied is closest in meaning to: imposed, 
believed, requested, correlated 



Properties of embeddings

29

C = ±2 The nearest words to Hogwarts:
◦ Sunnydale
◦ Evernight

C = ±5 The nearest words to Hogwarts:
◦Dumbledore
◦Malfoy
◦ halfblood

Similarity depends on window size C



Analogy: Embeddings capture 
relational meaning!

vector(‘king’) - vector(‘man’) + vector(‘woman’)  ≈ vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) ≈ vector(‘Rome’)

30







Embeddings can help study 
word history!
Train embeddings on old books to study 
changes in word meaning!!

Will Hamilton



Diachronic word embeddings for 
studying language change!

3
4

1900 1950 2000

vs.

Word vectors for 1920 Word vectors 1990

“dog” 1920 word vector

“dog” 1990 word vector



Visualizing changes

Project 300 dimensions down into 2

~30 million books, 1850-1990, Google Books data
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The evolution of sentiment words
Negative words change faster than positive words



Embeddings and bias



Embeddings reflect cultural bias

Ask “Paris : France :: Tokyo : x” 
◦ x = Japan

Ask “father : doctor :: mother : x” 
◦ x = nurse

Ask “man : computer programmer :: woman : x” 
◦ x = homemaker

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and 
Adam T. Kalai. "Man is to computer programmer as woman is to 
homemaker? debiasing word embeddings." In Advances in Neural 
Information Processing Systems, pp. 4349-4357. 2016.



Embeddings reflect cultural bias

Implicit Association test (Greenwald et al 1998): How associated are 
◦ concepts (flowers, insects) &  attributes (pleasantness, unpleasantness)?
◦ Studied by measuring timing latencies for categorization.

Psychological findings on US participants:
◦ African-American names are associated with unpleasant words (more than European-

American names)
◦ Male names associated more with math, female names with arts
◦ Old people's names with unpleasant words, young people with pleasant words.

Caliskan et al. replication with embeddings:
◦ African-American names (Leroy, Shaniqua) had a higher GloVe cosine 

with unpleasant words  (abuse, stink, ugly)
◦ European American names (Brad, Greg, Courtney) had a higher cosine 

with pleasant words (love, peace, miracle)

Embeddings reflect and replicate all sorts of pernicious biases.

Caliskan, Aylin, Joanna J. Bruson and Arvind Narayanan. 2017. Semantics derived automatically from 
language corpora contain human-like biases. Science 356:6334, 183-186.



Directions
Debiasing algorithms for embeddings
◦ Bolukbasi, Tolga, Chang, Kai-Wei, Zou, James Y., 

Saligrama, Venkatesh, and Kalai, Adam T. (2016). Man is 
to computer programmer as woman is to homemaker? 
debiasing word embeddings. In Advances in Neural Infor-
mation Processing Systems, pp. 4349–4357. 

Use embeddings as a historical tool to study bias



Embeddings as a window onto history

Use the Hamilton historical embeddings
The cosine similarity of embeddings for decade X 
for occupations (like teacher) to male vs female 
names
◦ Is correlated with the actual percentage of women 

teachers in decade X

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender 
and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635–E3644 



History of biased framings of women

Embeddings for competence adjectives are 
biased toward men
◦ Smart, wise, brilliant, intelligent, resourceful, 

thoughtful, logical, etc.

This bias is slowly decreasing 

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender 
and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635–E3644 



Embeddings reflect ethnic 
stereotypes over time

• Princeton trilogy experiments
• Attitudes toward ethnic groups (1933, 

1951, 1969) scores for adjectives
• industrious, superstitious, nationalistic, etc

• Cosine of Chinese name embeddings with 
those adjective embeddings correlates with 
human ratings.

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender 
and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635–E3644 



Change in linguistic framing 
1910-1990
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Table 3. Top Asian (vs. White) adjectives in 1910, 1950, and 1990
by relative norm difference in the COHA embedding

1910 1950 1990

Irresponsible Disorganized Inhibited
Envious Outrageous Passive
Barbaric Pompous Dissolute
Aggressive Unstable Haughty
Transparent Effeminate Complacent
Monstrous Unprincipled Forceful
Hateful Venomous Fixed
Cruel Disobedient Active
Greedy Predatory Sensitive
Bizarre Boisterous Hearty

qualitatively through the results in the snapshot analysis for gen-
der, which replicates prior work, and quantitatively as the metrics
correlate highly with one another, as shown in SI Appendix,
section A.5.

Furthermore, we primarily use linear models to fit the relation-
ship between embedding bias and various external metrics; how-
ever, the true relationships may be nonlinear and warrant further
study. This concern is especially salient when studying ethnic
stereotypes over time in the United States, as immigration dras-
tically shifts the size of each group as a percentage of the popu-
lation, which may interact with stereotypes and occupation per-
centages. However, the models are sufficient to show consistency
in the relationships between embedding bias and external metrics
across datasets over time. Further, the results do not qualitatively
change when, for example, population logit proportion instead
of raw percentage difference is used, as in ref. 44; we reproduce
our primary figures with such a transformation in SI Appendix,
section A.6.

Another potential concern may be the dependency of our
results on the specific word lists used and that the recall of
our methods in capturing human biases may not be adequate.
We take extensive care to reproduce similar results with other
word lists and types of measurements to demonstrate recall. For
example, in SI Appendix, section B.1, we repeat the static occu-
pation analysis using only professional occupations and repro-
duce an identical figure to Fig. 1 in SI Appendix, section B.1.
Furthermore, the plots themselves contain bootstrapped confi-
dence intervals; i.e., the coefficients for random subsets of the
occupations/adjectives and the intervals are tight. Similarly, for
adjectives, we use two different lists: one list from refs. 6 and 7
for which we have labeled stereotype scores and then a larger
one for the rest of the analysis where such scores are not needed.
We note that we do not tune either the embeddings or the word
lists, instead opting for the largest/most general publicly avail-
able data. For reproducibility, we share our code and all word
lists in a repository. That our methods replicate across many dif-
ferent embeddings and types of biases measured suggests their
generalizability.

A common challenge in historical analysis is that the written
text in, say 1910, may not completely reflect the popular social
attitude of that time. This is an important caveat to consider in
interpreting the results of the embeddings trained on these ear-
lier text corpora. The fact that the embedding bias for gender
and ethnic groups does track with census proportion is a positive
control that the embedding is still capturing meaningful patterns
despite possible limitations in the training text. Even this con-
trol may be limited in that the census proportion does not fully
capture gender or ethnic associations, even in the present day.
However, the written text does serve as a window into the atti-
tudes of the day as expressed in popular culture, and this work
allows for a more systematic study of such text.

Another limitation of our current approach is that all of the
embeddings used are fully “black box,” where the dimensions
have no inherent meaning. To provide a more causal explana-
tion of how the stereotypes appear in language, and to under-
stand how they function, future work can leverage more recent
embedding models in which certain dimensions are designed to
capture various aspects of language, such as the polarity of a
word or its parts of speech (45). Similarly, structural proper-
ties of words—beyond their census information or human-rated
stereotypes—can be studied in the context of these dimensions.
One can also leverage recent Bayesian embeddings models and
train more fine-grained embeddings over time, rather than a sep-
arate embedding per decade as done in this work (46, 47). These
approaches can be used in future work.

We view the main contribution of our work as introducing
and validating a framework for exploring the temporal dynam-
ics of stereotypes through the lens of word embeddings. Our
framework enables the computation of simple but quantitative
measures of bias as well as easy visualizations. It is important to
note that our goal in Quantifying Gender Stereotypes and Quanti-

fying Ethnic Stereotypes is quantitative exploratory analysis rather
than pinning down specific causal models of how certain stereo-
types arise or develop, although the analysis in Occupational

Stereotypes Beyond Census Data suggests that common language
is more biased than one would expect based on external, objec-
tive metrics. We believe our approach sharpens the analysis of
large cultural shifts in US history; e.g., the women’s movement
of the 1960s correlates with a sharp shift in the encoding matrix
(Fig. 4) as well as changes in the biases associated with spe-
cific occupations and gender-biased adjectives (e.g., hysterical vs.
emotional).

In standard quantitative social science, machine learning is
used as a tool to analyze data. Our work shows how the artifacts
of machine learning (word embeddings here) can themselves
be interesting objects of sociological analysis. We believe this
paradigm shift can lead to many fruitful studies.

Materials and Methods

In this section we describe the datasets, embeddings, and word lists used,
as well as how bias is quantified. More detail, including descriptions of
additional embeddings and the full word lists, are in SI Appendix, section
A. All of our data and code are available on GitHub (https://github.com/
nikhgarg/EmbeddingDynamicStereotypes), and we link to external data
sources as appropriate.

Embeddings. This work uses several pretrained word embeddings publicly
available online; refer to the respective sources for in-depth discussion of
their training parameters. These embeddings are among the most com-
monly used English embeddings, vary in the datasets on which they were

Fig. 6. Asian bias score over time for words related to outsiders in COHA
data. The shaded region is the bootstrap SE interval.

Garg et al. PNAS Latest Articles | 7 of 10

Change in association of Chinese names with adjectives 

framed as "othering" (barbaric, monstrous, bizarre)

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender 

and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635–E3644 



Changes in framing:
adjectives associated with Chinese
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Table 3. Top Asian (vs. White) adjectives in 1910, 1950, and 1990
by relative norm difference in the COHA embedding

1910 1950 1990

Irresponsible Disorganized Inhibited
Envious Outrageous Passive
Barbaric Pompous Dissolute
Aggressive Unstable Haughty
Transparent Effeminate Complacent
Monstrous Unprincipled Forceful
Hateful Venomous Fixed
Cruel Disobedient Active
Greedy Predatory Sensitive
Bizarre Boisterous Hearty

qualitatively through the results in the snapshot analysis for gen-
der, which replicates prior work, and quantitatively as the metrics
correlate highly with one another, as shown in SI Appendix,
section A.5.

Furthermore, we primarily use linear models to fit the relation-
ship between embedding bias and various external metrics; how-
ever, the true relationships may be nonlinear and warrant further
study. This concern is especially salient when studying ethnic
stereotypes over time in the United States, as immigration dras-
tically shifts the size of each group as a percentage of the popu-
lation, which may interact with stereotypes and occupation per-
centages. However, the models are sufficient to show consistency
in the relationships between embedding bias and external metrics
across datasets over time. Further, the results do not qualitatively
change when, for example, population logit proportion instead
of raw percentage difference is used, as in ref. 44; we reproduce
our primary figures with such a transformation in SI Appendix,
section A.6.

Another potential concern may be the dependency of our
results on the specific word lists used and that the recall of
our methods in capturing human biases may not be adequate.
We take extensive care to reproduce similar results with other
word lists and types of measurements to demonstrate recall. For
example, in SI Appendix, section B.1, we repeat the static occu-
pation analysis using only professional occupations and repro-
duce an identical figure to Fig. 1 in SI Appendix, section B.1.
Furthermore, the plots themselves contain bootstrapped confi-
dence intervals; i.e., the coefficients for random subsets of the
occupations/adjectives and the intervals are tight. Similarly, for
adjectives, we use two different lists: one list from refs. 6 and 7
for which we have labeled stereotype scores and then a larger
one for the rest of the analysis where such scores are not needed.
We note that we do not tune either the embeddings or the word
lists, instead opting for the largest/most general publicly avail-
able data. For reproducibility, we share our code and all word
lists in a repository. That our methods replicate across many dif-
ferent embeddings and types of biases measured suggests their
generalizability.

A common challenge in historical analysis is that the written
text in, say 1910, may not completely reflect the popular social
attitude of that time. This is an important caveat to consider in
interpreting the results of the embeddings trained on these ear-
lier text corpora. The fact that the embedding bias for gender
and ethnic groups does track with census proportion is a positive
control that the embedding is still capturing meaningful patterns
despite possible limitations in the training text. Even this con-
trol may be limited in that the census proportion does not fully
capture gender or ethnic associations, even in the present day.
However, the written text does serve as a window into the atti-
tudes of the day as expressed in popular culture, and this work
allows for a more systematic study of such text.

Another limitation of our current approach is that all of the
embeddings used are fully “black box,” where the dimensions
have no inherent meaning. To provide a more causal explana-
tion of how the stereotypes appear in language, and to under-
stand how they function, future work can leverage more recent
embedding models in which certain dimensions are designed to
capture various aspects of language, such as the polarity of a
word or its parts of speech (45). Similarly, structural proper-
ties of words—beyond their census information or human-rated
stereotypes—can be studied in the context of these dimensions.
One can also leverage recent Bayesian embeddings models and
train more fine-grained embeddings over time, rather than a sep-
arate embedding per decade as done in this work (46, 47). These
approaches can be used in future work.

We view the main contribution of our work as introducing
and validating a framework for exploring the temporal dynam-
ics of stereotypes through the lens of word embeddings. Our
framework enables the computation of simple but quantitative
measures of bias as well as easy visualizations. It is important to
note that our goal in Quantifying Gender Stereotypes and Quanti-

fying Ethnic Stereotypes is quantitative exploratory analysis rather
than pinning down specific causal models of how certain stereo-
types arise or develop, although the analysis in Occupational

Stereotypes Beyond Census Data suggests that common language
is more biased than one would expect based on external, objec-
tive metrics. We believe our approach sharpens the analysis of
large cultural shifts in US history; e.g., the women’s movement
of the 1960s correlates with a sharp shift in the encoding matrix
(Fig. 4) as well as changes in the biases associated with spe-
cific occupations and gender-biased adjectives (e.g., hysterical vs.
emotional).

In standard quantitative social science, machine learning is
used as a tool to analyze data. Our work shows how the artifacts
of machine learning (word embeddings here) can themselves
be interesting objects of sociological analysis. We believe this
paradigm shift can lead to many fruitful studies.

Materials and Methods

In this section we describe the datasets, embeddings, and word lists used,
as well as how bias is quantified. More detail, including descriptions of
additional embeddings and the full word lists, are in SI Appendix, section
A. All of our data and code are available on GitHub (https://github.com/
nikhgarg/EmbeddingDynamicStereotypes), and we link to external data
sources as appropriate.

Embeddings. This work uses several pretrained word embeddings publicly
available online; refer to the respective sources for in-depth discussion of
their training parameters. These embeddings are among the most com-
monly used English embeddings, vary in the datasets on which they were

Fig. 6. Asian bias score over time for words related to outsiders in COHA
data. The shaded region is the bootstrap SE interval.
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Conclusion
Concepts or word senses
◦ Have a complex many-to-many association with words

(homonymy, multiple senses)
◦ Have relations with each other

◦ Synonymy, Antonymy, Superordinate
◦ But are hard to define formally (necessary & sufficient 

conditions)

Embeddings = vector models of meaning
◦ More fine-grained than just a string or index
◦ Especially good at modeling similarity/analogy

◦ Just download them and use cosines!!
◦ Can use sparse models (tf-idf) or dense models (word2vec, 

GLoVE)
◦ Useful in practice but know they encode cultural stereotypes


