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What do words mean?

First thought: look in a dictionary
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Words, Lemmas, Senses, Definitions

Pronunciation:

 

 

 

 

pepper, n.
  Brit.  /ˈpɛpə/ , U.S.  /ˈpɛpər/

Forms:  OE peopor (rare), OE pipcer (transmission error), OE pipor, OE pipur (rare ...

Frequency (in current use):  
Etymology:  A borrowing from Latin. Etymon: Latin piper.
< classical Latin piper, a loanword < Indo-Aryan (as is ancient Greek πέπερι ); compare Sanskrit ...

 I. The spice or the plant.
 1.
 a. A hot pungent spice derived from the prepared fruits (peppercorns) of
the pepper plant, Piper nigrum (see sense 2a), used from early times to
season food, either whole or ground to powder (often in association with
salt). Also (locally, chiefly with distinguishing word): a similar spice
derived from the fruits of certain other species of the genus Piper; the
fruits themselves.

The ground spice from Piper nigrum comes in two forms, the more pungent black pepper, produced
from black peppercorns, and the milder white pepper, produced from white peppercorns: see BLACK

adj. and n. Special uses 5a, PEPPERCORN n. 1a, and WHITE adj. and n.  Special uses 7b(a).
 
cubeb, mignonette pepper, etc.: see the first element.

 b. With distinguishing word: any of certain other pungent spices derived
from plants of other families, esp. ones used as seasonings.

Cayenne, Jamaica pepper, etc.: see the first element.

 2.
 a. The plant Piper nigrum (family Piperaceae), a climbing shrub
indigenous to South Asia and also cultivated elsewhere in the tropics,
which has alternate stalked entire leaves, with pendulous spikes of small
green flowers opposite the leaves, succeeded by small berries turning red
when ripe. Also more widely: any plant of the genus Piper or the family
Piperaceae.

 b. Usu. with distinguishing word: any of numerous plants of other
families having hot pungent fruits or leaves which resemble pepper ( 1a)
in taste and in some cases are used as a substitute for it.
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betel-, malagueta, wall pepper, etc.: see the first element. See also WATER PEPPER n. 1.

 c. U.S. The California pepper tree, Schinus molle. Cf. PEPPER TREE n. 3.

 3. Any of various forms of capsicum, esp. Capsicum annuum var.
annuum. Originally (chiefly with distinguishing word): any variety of the
C. annuum Longum group, with elongated fruits having a hot, pungent
taste, the source of cayenne, chilli powder, paprika, etc., or of the
perennial C. frutescens, the source of Tabasco sauce. Now frequently
(more fully sweet pepper): any variety of the C. annuum Grossum
group, with large, bell-shaped or apple-shaped, mild-flavoured fruits,
usually ripening to red, orange, or yellow and eaten raw in salads or
cooked as a vegetable. Also: the fruit of any of these capsicums.

Sweet peppers are often used in their green immature state (more fully green pepper), but some
new varieties remain green when ripe.
 
bell-, bird-, cherry-, pod-, red pepper, etc.: see the first element. See also CHILLI n. 1, PIMENTO n. 2, etc.

 II. Extended uses.
 4.
 a. Phrases. to have pepper in the nose: to behave superciliously or
contemptuously. to take pepper in the nose, to snuff pepper: to
take offence, become angry. Now arch.

 b. In other allusive and proverbial contexts, chiefly with reference to the
biting, pungent, inflaming, or stimulating qualities of pepper.

†c. slang. Rough treatment; a severe beating, esp. one inflicted during a
boxing match. Cf. Pepper Alley n. at Compounds 2, PEPPER v. 3. Obs.

 5. Short for PEPPERPOT n. 1a.

 6. colloq. A rapid rate of turning the rope in a game of skipping. Also:
skipping at such a rate.
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senselemma definition



Lemma pepper
Sense 1: spice from pepper plant
Sense 2: the pepper plant itself
Sense 3: another similar plant (Jamaican 
pepper)
Sense 4: another plant with peppercorns 
(California pepper)
Sense 5: capsicum (i.e. chili, paprika, bell 
pepper, etc)



A sense or “concept” is the 
meaning component of a word



There are relations between 
senses



Relation: Synonymity

Synonyms have the same meaning in some 
or all contexts.
◦filbert / hazelnut
◦couch / sofa
◦big / large
◦automobile / car
◦vomit / throw up
◦Water / H20



Relation: Synonymity
Note that there are probably no examples of 
perfect synonymy.
◦ Even if many aspects of meaning are identical
◦ Still may not preserve the acceptability based on 

notions of politeness, slang, register, genre, etc.

The Linguistic Principle of Contrast:
◦ Difference in form -> difference in meaning



Relation: Synonymity?
Water/H20
Big/large
Brave/courageous



Relation: Antonymy

Senses that are opposites with respect to one feature of 
meaning
Otherwise, they are very similar!
dark/light   short/long fast/slow rise/fall
hot/cold up/down in/out

More formally: antonyms can
◦ define a binary opposition

or be at opposite ends of a scale
◦ long/short, fast/slow

◦ Be reversives:
◦ rise/fall, up/down



Relation: Similarity
Words with similar meanings.  Not 
synonyms, but sharing some element of 
meaning

car, bicycle
cow, horse



Ask humans how similar 2 
words are

word1 word2 similarity

vanish disappear 9.8 
behave obey 7.3 
belief impression 5.95 
muscle bone 3.65 
modest flexible 0.98 
hole agreement 0.3 

SimLex-999 dataset (Hill et al., 2015) 



Relation: Word relatedness

Also called "word association"
Words be related in any way, perhaps via a 
semantic frame or field

◦car, bicycle:    similar
◦car, gasoline:   related, not similar



Semantic field

Words that 
◦ cover a particular semantic domain 
◦ bear structured relations with each other. 

hospitals
surgeon, scalpel, nurse, anaesthetic, hospital

restaurants
waiter, menu, plate, food, menu, chef), 

houses
door, roof, kitchen, family, bed



Relation: Superordinate/ 
subordinate

One sense is a subordinate of another if the first 
sense is more specific, denoting a subclass of the 
other

◦ car is a subordinate of vehicle
◦ mango is a subordinate of fruit

Conversely superordinate
◦ vehicle is a superordinate of car
◦ fruit is a subodinate of mango

Superordinate vehicle fruit furniture
Subordinate car mango chair



These levels are not symmetric
One level of category is 
distinguished from the others
The "basic level"



Name these items



Superordinate        Basic Subordinate

chair office chair 
piano chair 

rocking chair
furniture lamp torchiere

desk lamp
table end table

coffee table 



Cluster of Interactional 
Properties
Basic level things are “human-sized”
Consider chairs
◦We know how to interact with a chair 
(sitting)

◦Not so clear for superordinate 
categories like furniture
◦“Imagine a furniture without thinking of a 
bed/table/chair/specific basic-level 
category”



The basic level

Is the level of distinctive actions
Is the level which is learned earliest and at 
which things are first named
It is the level at which names are shortest 
and used most frequently



Connotation
Words have affective meanings
positive connotations (happy) 
negative connotations (sad)

positive evaluation (great, love) 
negative evaluation (terrible, hate). 



So far
Concepts or word senses
◦ Have a complex many-to-many association with words

(homonymy, multiple senses)

Have relations with each other
◦ Synonymy
◦ Antonymy
◦ Similarity
◦ Relatedness
◦ Superordinate/subordinate
◦ Connotation



But how to define a concept?



Classical (“Aristotelian”) Theory of Concepts

The meaning of a word:
a concept defined by necessary and sufficient conditions
A necessary condition for being an X is a condition C that X must satisfy in 
order for it to be an X.

◦ If not C, then not X
◦ ”Having four sides” is necessary to be a square.

A sufficient condition for being an X is condition such that if something 
satisfies condition C, then it must be an X.

◦ If and only if C, then X
◦ The following necessary conditions, jointly, are sufficient to be a square

◦ x has (exactly) four sides
◦ each of x's sides is straight
◦ x is a closed figure
◦ x lies in a plane
◦ each of x's sides is equal in length to each of the others
◦ each of x's interior angles is equal to the others (right angles)
◦ the sides of x are joined at their ends

Example 
from 
Norman 
Swartz, 
SFU



Problem 1: The features are complex and 
may be context-dependent

William Labov. 1975

What are these?
Cup or bowl?



The category depends on complex 
features of the object (diameter, etc)



The category depends on the context! 
(If there is food in it, it’s a bowl)



Labov’s definition of cup
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2.0 Literature Review    

The following section will be divided into two sections. The first section will outline some 

semantic approaches to explicating the core „cup‟ and „mug‟, and their relation to „cup of [tea]‟ 

and „mug of [tea]‟. The second will outline corpus linguistics and its contribution to this field 

and the approaches that will then be used in the current study.  

 

2.1. Semantic definitions of ‘cup’ and ‘mug’ 

There have been several attempts within the field of semantics to explicate the features that 

differentiate „cup‟ and „mug‟, a distinction of “notorious difficulty” (Carter, 1998, p. 19). One of 

the first, and most influential, was Labov‟s (2004) original 1975 experiment in which subjects 

were shown pictures of varying indeterminacy (Appendix 1) and asked to label them. From this, 

Labov was able to come up with a mathematical definition of „cup‟ as: 

Figure 1: Labov’s (2004) definition of ‘cup’ 

 

 

 

 

 

 

The term cup is used to denote round containers with a ratio of depth to width of 1±r 
where r≤rb, and rb = α1 + α2 + …αυ and α1 is a positive quality when the feature i is present 
and 0 otherwise. 

feature 1 = with one handle 
 2 = made of opaque vitreous material 
 3 = used for consumption of food 
 4 = used for the consumption of liquid food 
 5 = used for consumption of hot liquid food 
 6 = with a saucer 
 7 = tapering 
 8 = circular in cross-section 
 
Cup is used variably to denote such containers with ratios width to depth 1±r where rb≤r≤r1 
with a probability of r1 - r/rt – rb. The quantity 1±rb expresses the distance from the modal 
value of width to height. 
 
      (Labov, 2004, p. 86) 



Ludwig Wittgenstein (1889-
1951)
Philosopher of 
language
In his late years, a 
proponent of studying 
“ordinary language”



Wittgenstein (1945)
Philosophical
Investigations.
Paragraphs 66,67



What is a game?



Wittgenstein’s thought experiment on 
"What is a game”:

PI #66: 
”Don’t say “there must be something common, or they would 
not be called `games’”—but look and see whether there is 
anything common to all”

Is it amusing?
Is there competition?
Is there long-term strategy?
Is skill required?
Must luck play a role?
Are there cards?
Is there a ball?



Family Resemblance

Game 1 Game 2 Game 3 Game 4
ABC BCD ACD ABD

“each item has at least one, and probably 
several, elements in common with one or 
more items, but no, or few, elements are 
common to all items”    Rosch and Mervis



How about a radically different 
approach?



Ludwig Wittgenstein

PI #43: 
"The meaning of a word is its use in the 
language"



Let's define words by their 
usages
In particular, words are defined by their 
environments (the words around them)

Zellig Harris (1954): If A and B have almost 
identical environments we say that they are 
synonyms.



What does ongchoi mean?
Suppose you see these sentences:
•Ong choi is delicious sautéed with garlic. 
•Ong choi is superb over rice
•Ong choi leaves with salty sauces
And you've also seen these:
• …spinach sautéed with garlic over rice
• Chard stems and leaves are delicious
• Collard greens and other salty leafy greens
Conclusion:
◦ Ongchoi is a leafy green like spinach, chard, or collard 

greens



Ong choi: Ipomoea aquatica
"Water Spinach"

Yamaguchi, Wikimedia Commons, public domain



good

nice

bad
worst

not good

wonderful
amazing

terrific

dislike

worse

very good incredibly good
fantastic

incredibly badnow

youi
that

with

byto
‘s

are

is

a
than

We'll build a new model of 
meaning focusing on similarity
Each word = a vector 
◦ Not just "word" or word45.

Similar words are "nearby in space"



We define a word as a vector
Called an "embedding" because it's embedded 
into a space
The standard way to represent meaning in NLP
Fine-grained model of meaning for similarity 
◦ NLP tasks like sentiment analysis

◦ With words,  requires same word to be in training and test
◦ With embeddings: ok if similar words occurred!!! 

◦ Question answering, conversational agents, etc



We'll introduce 2 kinds of 
embeddings
Tf-idf
◦ A common baseline model
◦ Sparse vectors
◦ Words are represented by a simple function of the counts 

of nearby words

Word2vec
◦ Dense vectors
◦ Representation is created by training a classifier to 

distinguish nearby and far-away words



Review: words, vectors, and 
co-occurrence matrices



Term-document matrix

8 CHAPTER 6 • VECTOR SEMANTICS

6.3 Words and Vectors

Vector or distributional models of meaning are generally based on a co-occurrence
matrix, a way of representing how often words co-occur. This matrix can be con-
structed in various ways; let’s s begin by looking at one such co-occurrence matrix,
a term-document matrix.

6.3.1 Vectors and documents
In a term-document matrix, each row represents a word in the vocabulary and eachterm-document

matrix
column represents a document from some collection of documents. Fig. 6.2 shows a
small selection from a term-document matrix showing the occurrence of four words
in four plays by Shakespeare. Each cell in this matrix represents the number of times
a particular word (defined by the row) occurs in a particular document (defined by
the column). Thus clown appeared 117 times in Twelfth Night.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 1 8 15
soldier 2 2 12 36

fool 37 58 1 5
clown 5 117 0 0
Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

The term-document matrix of Fig. 6.2 was first defined as part of the vector
space model of information retrieval (Salton, 1971). In this model, a document isvector space

model
represented as a count vector, a column in Fig. 6.3.

To review some basic linear algebra, a vector is, at heart, just a list or array ofvector
numbers. So As You Like It is represented as the list [1,2,37,5] and Julius Caesar is
represented as the list [8,12,1,0]. A vector space is a collection of vectors, character-vector space

ized by their dimension. In the example in Fig. 6.3, the vectors are of dimension 4,dimension
just so they fit on the page; in real term-document matrices, the vectors representing
each document would have dimensionality |V |, the vocabulary size.

The ordering of the numbers in a vector space is not arbitrary; each position
indicates a meaningful dimension on which the documents can vary. Thus the first
dimension for both these vectors corresponds to the number of times the word battle
occurs, and we can compare each dimension, noting for example that the vectors for
As You Like It and Twelfth Night have the same value 1 for the first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 1 8 15
soldier 2 2 12 36

fool 37 58 1 5
clown 5 117 0 0
Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as identifying a point in |V |-dimensional
space; thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-
dimensional spaces are hard to draw in textbooks, Fig. 6.4 shows a visualization in
two dimensions; we’ve arbitrarily chosen the dimensions corresponding to the words
battle and fool.
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Visualizing document vectors
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Vectors are the basis of 
information retrieval
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Vectors are similar for the two comedies
Different than the history

Comedies have more fools and wit and 
fewer battles.



Words can be vectors too
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battle is "the kind of word that occurs in Julius 
Caesar and Henry V"

fool is "the kind of word that occurs in 
comedies, especially Twelfth Night"



More common: word-word matrix
(or "term-context matrix")

Two words are similar in meaning if their context vectors 
are similar

aardvark computer data pinch result sugar …
apricot 0 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0
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tle, [1,1,8,15]; and soldier [2,2,12,36]. Each entry in the vector thus represents the
counts of the word’s occurrence in the document corresponding to that dimension.

For documents, we saw that similar documents had similar vectors, because sim-
ilar documents tend to have similar words. This same principle applies to words:
similar words have similar vectors because they tend to occur in similar documents.
The term-document matrix thus lets us represent the meaning of a word by the doc-
uments it tends to occur in.

However, it is most common to use a different kind of context for the dimensions
of a word’s vector representation. Rather than the term-document matrix we use the
term-term matrix, more commonly called the word-word matrix or the term-term-term

matrix
word-word

matrix context matrix, in which the columns are labeled by words rather than documents.
This matrix is thus of dimensionality |V |⇥ |V | and each cell records the number of
times the row (target) word and the column (context) word co-occur in some context
in some training corpus. The context could be the document, in which case the cell
represents the number of times the two words appear in the same document. It is
most common, however, to use smaller contexts, generally a window around the
word, for example of 4 words to the left and 4 words to the right, in which case
the cell represents the number of times (in some training corpus) the column word
occurs in such a ±4 word window around the row word.

For example here are 7-word windows surrounding four sample words from the
Brown corpus (just one example of each word):

sugar, a sliced lemon, a tablespoonful of apricot jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence)
of the occurrences of context words. Fig. 6.5 shows a selection from the word-word
co-occurrence matrix computed from the Brown corpus for these four words.

aardvark ... computer data pinch result sugar ...
apricot 0 ... 0 0 1 0 1

pineapple 0 ... 0 0 1 0 1
digital 0 ... 2 1 0 1 0

information 0 ... 1 6 0 4 0
Figure 6.5 Co-occurrence vectors for four words, computed from the Brown corpus, show-
ing only six of the dimensions (hand-picked for pedagogical purposes). The vector for the
word digital is outlined in red. Note that a real vector would have vastly more dimensions
and thus be much sparser.

Note in Fig. 6.5 that the two words apricot and pineapple are more similar to
each other (both pinch and sugar tend to occur in their window) than they are to
other words like digital; conversely, digital and information are more similar to each
other than, say, to apricot. Fig. 6.6 shows a spatial visualization.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the
training corpus; keeping words after about the most frequent 50,000 or so is gener-
ally not helpful). But of course since most of these numbers are zero these are sparse
vector representations, and there are efficient algorithms for storing and computing
with sparse matrices.

Now that we have some intuitions, let’s move on to examine the details of com-
puting word similarity. Afterwards we’ll discuss the tf-idf method of weighting
cells.
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Reminders from linear algebra

6.4 • COSINE FOR MEASURING SIMILARITY 11
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Figure 6.6 A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words data and result.

6.4 Cosine for measuring similarity

To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v|=

vuut
NX

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

vector length
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6.4 Cosine for measuring similarity

To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
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As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length
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The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:



Cosine for computing similarity

vi is the count for word v in context i
wi is the count for word w in context i.

Cos(v,w) is the cosine similarity of v and w

Sec. 6.3
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~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (6.9)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector
dividing it by |~a|. For unit vectors, the dot product is the same as the cosine.

The cosine value ranges from 1 for vectors pointing in the same direction, through
0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.

Let’s see how the cosine computes which of the words apricot or digital is closer
in meaning to information, just using raw counts from the following simplified table:

large data computer
apricot 2 0 0
digital 0 1 2

information 1 6 1

cos(apricot, information) =
2+0+0p

4+0+0
p

1+36+1
=

2
2
p

38
= .16

cos(digital, information) =
0+6+2p

0+1+4
p

1+36+1
=

8p
38
p

5
= .58 (6.11)

The model decides that information is closer to digital than it is to apricot, a
result that seems sensible. Fig. 6.7 shows a visualization.

6.5 TF-IDF: Weighing terms in the vector

The co-occurrence matrix in Fig. 6.5 represented each cell by the raw frequency of
the co-occurrence of two words.

It turns out, however, that simple frequency isn’t the best measure of association
between words. One problem is that raw frequency is very skewed and not very
discriminative. If we want to know what kinds of contexts are shared by apricot and
pineapple but not by digital and information, we’re not going to get good discrimi-
nation from words like the, it, or they, which occur frequently with all sorts of words
and aren’t informative about any particular word.

It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear
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dividing it by |~a|. For unit vectors, the dot product is the same as the cosine.

The cosine value ranges from 1 for vectors pointing in the same direction, through
0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
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The model decides that information is closer to digital than it is to apricot, a
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6.5 TF-IDF: Weighing terms in the vector

The co-occurrence matrix in Fig. 6.5 represented each cell by the raw frequency of
the co-occurrence of two words.

It turns out, however, that simple frequency isn’t the best measure of association
between words. One problem is that raw frequency is very skewed and not very
discriminative. If we want to know what kinds of contexts are shared by apricot and
pineapple but not by digital and information, we’re not going to get good discrimi-
nation from words like the, it, or they, which occur frequently with all sorts of words
and aren’t informative about any particular word.

It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear



Cosine as a similarity metric

-1: vectors point in opposite directions 

+1:  vectors point in same directions

0: vectors are orthogonal

Frequency is non-negative, so  cosine range 0-1
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large data computer
apricot 1 0 0
digital 0 1 2
information 1 6 1
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Which pair of words is more similar?
cosine(apricot,information) = 

cosine(digital,information) =

cosine(apricot,digital) =

cos(v, w) =
v • w
v w

=
v
v
•
w
w
=

viwii=1

N
∑
vi
2

i=1

N
∑ wi

2
i=1

N
∑

1+ 0+ 0

1+ 0+ 0

1+36+1

1+36+1

0+1+ 4

0+1+ 4

     1+ 0+ 0    

     0+ 6+ 2    

     0+ 0+ 0    

=
1
38

= .16

=
8
38 5

= .58

= 0



Visualizing cosines 
(well, angles)
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But raw frequency is a bad 
representation
Frequency is clearly useful; if sugar appears a lot 
near apricot, that's useful information.

But overly frequent words like the, it, or they are 
not very informative about the context
Need a function that resolves this frequency 
paradox!



tf-idf: combine two factors
tf: term frequency. frequency count (usually log-transformed):

Idf: inverse document frequency: tf-
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Figure 6.7 A graphical demonstration of the cosine measure of similarity, showing vectors
for three words (apricot, digital, and information) in the two dimensional space defined by
counts of the words data and large in the neighborhood. Note that the angle between digital
and information is smaller than the angle between apricot and information. When two vectors
are more similar, the cosine is larger but the angle is smaller; the cosine has its maximum (1)
when the angle between two vectors is smallest (0�); the cosine of all other angles is less than
1.

once or twice. Yet words that are too frequent—ubiquitous, like the— are unimpor-
tant. How can we balance these two conflicting constraints?

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) algorithm is the
product of two terms, each term capturing one of these two intuitions:

1. The first is the term frequency (Luhn, 1957): simply the frequency of theterm frequency

word in the document, although we may also use functions of this frequency
like the log frequency.

2. The second factor is used to give a higher weight to words that occur only
in a few documents. Terms that are limited to a few documents are useful
for discriminating those documents from the rest of the collection; terms that
occur frequently across the entire collection aren’t as helpful. The inverse
document frequency or IDF term weight (Sparck Jones, 1972) is one way of

inverse
document
frequency

IDF assigning higher weights to these more discriminative words. IDF is defined
using the fraction N/dfi, where N is the total number of documents in the
collection, and dfi is the number of documents in which term i occurs. The
fewer documents in which a term occurs, the higher this weight. The lowest
weight of 1 is assigned to terms that occur in all the documents. Because of
the large number of documents in many collections, this measure is usually
squashed with a log function.

It’s usually clear what counts as a document: when processing a collection
of encyclopedia articles like Wikipedia, the document is a Wikipedia page; in
processing newspaper articles, the document is a single article. Occasionally
your corpus might not have appropriate document divisions and you might
need to break up the corpus into documents yourself.

The resulting definition for inverse document frequency (IDF) is thus

idfi = log
✓

N
dfi

◆
(6.12)

The tf-idf weighting of the value for word i in document j, wi j thus combinestf-idf

Total # of  docs in collection

# of  docs that have word i
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Collection Frequency Document Frequency
Romeo 113 1
action 113 31

We assign importance to these more discriminative words like Romeo via
the inverse document frequency or idf term weight (Sparck Jones, 1972).idf
The idf is defined using the fraction N/dft , where N is the total number of
documents in the collection, and dft is the number of documents in which
term t occurs. The fewer documents in which a term occurs, the higher this
weight. The lowest weight of 1 is assigned to terms that occur in all the
documents. It’s usually clear what counts as a document: in Shakespeare
we would use a play; when processing a collection of encyclopedia articles
like Wikipedia, the document is a Wikipedia page; in processing newspaper
articles, the document is a single article. Occasionally your corpus might
not have appropriate document divisions and you might need to break up the
corpus into documents yourself for the purposes of computing idf.

Because of the large number of documents in many collections, this mea-
sure is usually squashed with a log function. The resulting definition for in-
verse document frequency (idf) is thus

idft = log10

✓
N
dft

◆
(6.12)

Here are some idf values for some words in the Shakespeare corpus, ranging
from extremely informative words which occur in only one play like Romeo, to
those that occur in a few like salad or Falstaff, to those which are very common like
fool or so common as to be completely non-discriminative since they occur in all 37
plays like good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.074
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighting of the value for word t in document d, wt,d thus combinestf-idf
term frequency with idf:

wt,d = tft,d ⇥ idft (6.13)

Fig. 6.8 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2.
Note that the tf-idf values for the dimension corresponding to the word good have
now all become 0; since this word appears in every document, the tf-idf algorithm
leads it to be ignored in any comparison of the plays. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

The tf-idf weighting is by far the dominant way of weighting co-occurrence ma-
trices in information retrieval, but also plays a role in many other aspects of natural

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).

tf-idf value for word t in document d:

Words like "the" or "good" have very low idf
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Figure 6.7 A graphical demonstration of cosine similarity, showing vectors for three words
(apricot, digital, and information) in the two dimensional space defined by counts of the
words data and large in the neighborhood. Note that the angle between digital and informa-
tion is smaller than the angle between apricot and information. When two vectors are more
similar, the cosine is larger but the angle is smaller; the cosine has its maximum (1) when the
angle between two vectors is smallest (0�); the cosine of all other angles is less than 1.

It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear
once or twice. Yet words that are too frequent—ubiquitous, like the or good— are
unimportant. How can we balance these two conflicting constraints?

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) algorithm is the
product of two terms, each term capturing one of these two intuitions:

1. The first is the term frequency (Luhn, 1957): the frequency of the word in theterm frequency

document. Normally we want to downweight the raw frequency a bit, since
a word appearing 100 times in a document doesn’t make that word 100 times
more likely to be relevant to the meaning of the document. So we generally
use the log10 of the frequency, resulting in the following definition for the term
frequency weight:

tft,d =

⇢
1+ log10 count(t,d) if count(t,d)> 0
0 otherwise

Thus terms which occur 10 times in a document would have a tf=2, 100 times
in a document tf=3, 1000 times tf=4, and so on.

2. The second factor is used to give a higher weight to words that occur only
in a few documents. Terms that are limited to a few documents are useful
for discriminating those documents from the rest of the collection; terms that
occur frequently across the entire collection aren’t as helpful. The document
frequency dft of a term t is simply the number of documents it occurs in. Bydocument

frequency
contrast, the collection frequency of a term is the total number of times the
word appears in the whole collection in any document. Consider in the col-
lection Shakespeare’s 37 plays the two words Romeo and action. The words
have identical collection frequencies of 113 (they both occur 113 times in all
the plays) but very different document frequencies, since Romeo only occurs
in a single play. If our goal is find documents about the romantic tribulations
of Romeo, the word Romeo should be highly weighted:



Summary: tf-idf
Compare two words using tf-idf cosine to see 
if they are similar
Compare two documents
◦ Take the centroid of vectors of all the words in 

the document
◦ Centroid document vector is:
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term frequency with IDF:

wi j = tfi jidfi (6.13)

The tf-idf weighting is by far the dominant way of weighting co-occurrence ma-
trices in information retrieval, but also plays a role in many other aspects of natural
language processing. It’s also a great baseline, the simple thing to try first.

6.6 Applications of the tf-idf vector model

In summary, the vector semantics model we’ve described so far represents a target
word as a vector with dimensions corresponding to all the words in the vocabulary
(length |V |, with vocabularies of 20,000 to 50,000), which is also sparse (most values
are zero). The values in each dimension are the frequency with which the target
word co-occurs with each neighboring context word, weighted by tf-idf. The model
computes the similarity between two words x and y by taking the cosine of their
tf-idf vectors; high cosine, high similarity. This entire model is sometimes referred
to for short as the tf-idf model, after the weighting function.

One common use for a tf-idf model is to compute word similarity, a useful tool
for tasks like finding word paraphrases, tracking changes in word meaning, or au-
tomatically discovering meanings of words in different corpora. For example, we
can find the 10 most similar words to any target word w by computing the cosines
between w and each of the V �1 other words, sorting, and looking at the top 10.

The tf-idf vector model can also be used to decide if two documents are similar.
We represent a document by taking the vectors of all the words in the document, and
computing the centroid of all those vectors. The centroid is the multidimensionalcentroid
version of the mean; the centroid of a set of vectors is a single vector that has the
minimum sum of squared distances to each of the vectors in the set. Given k word
vectors w1,w2, ...,wk, the centroid document vector d is:document

vector

d =
w1 +w2 + ...+wk

k
(6.14)

Given two documents, we can then compute their document vectors d1 and d2,
and estimate the similarity between the two documents by cos(d1,d2).

Document similarity is also useful for all sorts of applications; information re-
trieval, plagiarism detection, news recommender systems, and even for digital hu-
manities tasks like comparing different versions of a text to see which are similar to
each other.

6.7 Word2vec

In the previous sections we saw how to represent a word as a sparse, long vector with
dimensions corresponding to the words in the vocabulary, and whose values were tf-
idf or other functions of the count of the word co-occurring with each neighboring
word. In this section we turn to an alternative method for representing a word: the
use of vectors that are short (of length perhaps 50-500) and dense (most values are
non-zero).



An alternative to tf-idf

Ask whether a context word is particularly 
informative about the target word.
◦ Positive Pointwise Mutual Information (PPMI)

57



Pointwise Mutual Information

Pointwise mutual information: 
Do events x and y co-occur more than if they were independent?

PMI between two words:  (Church & Hanks 1989)
Do words x and y co-occur more than if they were independent? 

PMI $%&'(, $%&'* = log*
/($%&'(, $%&'*)
/ $%&'( /($%&'*)

PMI(X,Y ) = log2
P(x,y)
P(x)P(y)



Positive Pointwise Mutual Information
◦ PMI ranges from −∞ to +∞
◦ But the negative values are problematic

◦ Things are co-occurring less than we expect by chance
◦ Unreliable without enormous corpora

◦ Imagine w1 and w2 whose probability is each 10-6

◦ Hard to be sure p(w1,w2) is significantly different than 10-12

◦ Plus it’s not clear people are good at “unrelatedness”
◦ So we just replace negative PMI values by 0
◦ Positive PMI (PPMI) between word1 and word2:

PPMI '()*+,'()*- = max log-
5('()*+,'()*-)
5 '()*+ 5('()*-)

, 0



Computing PPMI on a term-context 
matrix

Matrix F with W rows (words) and C columns (contexts)

fij is # of times wi occurs in context cj
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pij =
fij

fij
j=1

C

∑
i=1

W

∑
pi* =

fij
j=1

C

∑

fij
j=1

C

∑
i=1

W

∑
p* j =

fij
i=1

W

∑

fij
j=1

C

∑
i=1

W

∑

pmiij = log2
pij

pi*p* j
ppmiij =

pmiij if  pmiij > 0

0 otherwise

!
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p(w=information,c=data) = 

p(w=information) =

p(c=data) =

61

p(w,context) p(w)
computer data pinch result sugar

apricot 0.00 0.00 0.05 0.00 0.05 0.11
pineapple 0.00 0.00 0.05 0.00 0.05 0.11
digital 0.11 0.05 0.00 0.05 0.00 0.21
information 0.05 0.32 0.00 0.21 0.00 0.58

p(context) 0.16 0.37 0.11 0.26 0.11

= .326/19
11/19 = .58

7/19 = .37

pij =
fij

fij
j=1

C

∑
i=1

W

∑

p(wi ) =
fij

j=1

C

∑

N
p(cj ) =

fij
i=1

W

∑

N
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pmiij = log2
pij

pi*p* j

pmi(information,data) = log2 (

p(w,context) p(w)
computer data pinch result sugar

apricot 0.00 0.00 0.05 0.00 0.05 0.11
pineapple 0.00 0.00 0.05 0.00 0.05 0.11
digital 0.11 0.05 0.00 0.05 0.00 0.21
information 0.05 0.32 0.00 0.21 0.00 0.58

p(context) 0.16 0.37 0.11 0.26 0.11

PPMI(w,context)
computer data pinch result sugar

apricot 1 1 2.25 1 2.25
pineapple 1 1 2.25 1 2.25
digital 1.66 0.00 1 0.00 1
information 0.00 0.57 1 0.47 1

.32 / (.37*.58) ) = .58
(.57 using full precision)



Weighting PMI
PMI is biased toward infrequent events
◦ Very rare words have very high PMI values

Two solutions:
◦ Give rare words slightly higher probabilities
◦ Use add-one smoothing (which has a similar 

effect)
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Weighting PMI: Giving rare 
context words slightly higher 
probability

Raise the context probabilities to ! = 0.75:

This helps because '( ) > ' ) for rare c
Consider two events, P(a) = .99 and P(b)=.01

'( + = .,,.-.
.,,.-./.01.-. = .97 '( 3 = .01.-.

.01.-./.01.-. = .03
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p(w,context) p(w)
computer data pinch result sugar p(w)

apricot 0 0 0.5 0 0.5 0.11
pineapple 0 0 0.5 0 0.5 0.11

digital 0.11 0.5 0 0.5 0 0.21
information 0.5 .32 0 0.21 0 0.58

p(context) 0.16 0.37 0.11 0.26 0.11
Figure 19.3 Replacing the counts in Fig. 17.2 with joint probabilities, showing the
marginals around the outside.

computer data pinch result sugar
apricot 0 0 2.25 0 2.25

pineapple 0 0 2.25 0 2.25
digital 1.66 0 0 0 0

information 0 0.57 0 0.47 0
Figure 19.4 The PPMI matrix showing the association between words and context words,
computed from the counts in Fig. 17.2 again showing six dimensions.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency
events is to slightly change the computation for P(c), using a different function Pa(c)
that raises contexts to the power of a (Levy et al., 2015):

PPMIa(w,c) = max(log2
P(w,c)

P(w)Pa(c)
,0) (19.8)

Pa(c) =
count(c)a

P
c count(c)a (19.9)

Levy et al. (2015) found that a setting of a = 0.75 improved performance of
embeddings on a wide range of tasks (drawing on a similar weighting used for skip-
grams (Mikolov et al., 2013a) and GloVe (Pennington et al., 2014)). This works
because raising the probability to a = 0.75 increases the probability assigned to rare
contexts, and hence lowers their PMI (Pa(c) > P(c) when c is rare).

Another possible solution is Laplace smoothing: Before computing PMI, a small
constant k (values of 0.1-3 are common) is added to each of the counts, shrinking
(discounting) all the non-zero values. The larger the k, the more the non-zero counts
are discounted.

computer data pinch result sugar
apricot 2 2 3 2 3

pineapple 2 2 3 2 3
digital 4 3 2 3 2

information 3 8 2 6 2
Figure 19.5 Laplace (add-2) smoothing of the counts in Fig. 17.2.

19.2.1 Measuring similarity: the cosine
To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors. In this section we’ll
motivate and introduce this important measure.



Use Laplace (add-1) 
smoothing
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Add#2%Smoothed%Count(w,context)
computer data pinch result sugar

apricot 2 2 3 2 3
pineapple 2 2 3 2 3
digital 4 3 2 3 2
information 3 8 2 6 2

p(w,context),[add02] p(w)
computer data pinch result sugar

apricot 0.03 0.03 0.05 0.03 0.05 0.20
pineapple 0.03 0.03 0.05 0.03 0.05 0.20
digital 0.07 0.05 0.03 0.05 0.03 0.24
information 0.05 0.14 0.03 0.10 0.03 0.36

p(context) 0.19 0.25 0.17 0.22 0.17



PPMI versus add-2 smoothed 
PPMI
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PPMI(w,context).[add22]
computer data pinch result sugar

apricot 0.00 0.00 0.56 0.00 0.56
pineapple 0.00 0.00 0.56 0.00 0.56
digital 0.62 0.00 0.00 0.00 0.00
information 0.00 0.58 0.00 0.37 0.00

PPMI(w,context)
computer data pinch result sugar

apricot 1 1 2.25 1 2.25
pineapple 1 1 2.25 1 2.25
digital 1.66 0.00 1 0.00 1
information 0.00 0.57 1 0.47 1



Summary for Part I
• Survey of Lexical Semantics
• Idea of Embeddings: Represent a word as a 

function of its distribution with other words
• Tf-idf
• Cosines
• PPMI

• Next lecture: sparse embeddings, word2vec


