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5 (Jamshidian and Jennrich 93) 225.1 Optimisation of Quadratic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 225.1.1 Conjugate Gradient Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 235.1.2 Generalised Conjugate Gradient Methods . . . . . . . . . . . . . . . . . . . . 245.2 Accelerating EM using Generalised Conjugate Gradients . . . . . . . . . . . . . . . . 245.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 Conclusions 251 IntroductionThe Expectation Maximization (EM) algorithm is a parameter estimation method which falls intothe general framework of maximum-likelihood estimation, and is applied in cases where part of thedata can be considered to be incomplete, or \hidden". It is essentially an iterative optimisationalgorithm which, at least under certain conditions, will converge to parameter values at a localmaximum of the likelihood function. There are many statistical models which turn out to be specialcases of EM, for example: Hidden Markov Models (HMMs) (Baum 71); the generalisation of HMMsto Stochastic Context-Free Grammars (Baker 79); mixture models; and estimation in cases of missingdata.(Dempster, Laird and Rubin) (from here on referred to as DLR)) de�ned the EM algorithm,and proved certain properties, in particular that at each iteration the log-likelihood of the observeddata is guaranteed to be non-decreasing. That is, if L(�) is the likelihood of the observed datagiven parameter values �, and �t, �t+1 are the parameter values at the t'th and t+1'th iterationsrespectively, then L(�t+1) � L(�t). They also de�ned Generalised EM (GEM) algorithms, whichinclude EM as a special case, and can be more computationally e�cient, while still guaranteeingthat L(�t+1) � L(�t).(Wu 1983) addressed two issues:1. Given that L converges to some value L�, then is L� a global maximum, local maximum,saddle point or some other point? It is well known that L� can not, in general, be guaranteedto be a global maximum. L(�t+1) � L(�t) is one condition for convergence to a stationarypoint of L, (Wu 83) de�nes additional conditions for convergence of an EM or GEM algorithmto a stationary point. At least for EM algorithms, these conditions are quite mild. He alsogave a condition for convergence to a local maximum as opposed to a saddle point, but thiscondition is di�cult to verify in practice (and does not hold in many practical applications).2. Under what conditions do the parameter estimates � also converge to some point ��? Con-vergence of L to a point L� does not guarantee convergence of the parameter estimates tosome ��, particularly if there is more than one point � satisfying L(�) = L�.(JJ 93) emphasise that EM is an optimisation algorithm for L, and show that it is approximatelya steepest descent algorithm, an optimisation method which often converges slowly. They show thatwith a relatively minor increase in complexity the EM algorithm can be modi�ed to a conjugate-gradient descent method, which is known to be an improved optimisation algorithm. They give3



experimental results showing that their algorithm typically converges around 3-10 times faster thanstandard EM, and can in some cases be 25-100 times faster.The remainder of this paper gives some background about maximum-likelihood estimation insection 2; considers the major results of DLR, (Wu 83) and (JJ 77) in sections 3, 4 and 5; andconcludes in section 6. For a summary of the major points of this paper the reader should refer atthis point to the bullet points in section 6.2 PreliminariesMost of the results in this section are taken from [BD 77].2.1 NotationWe use bold-face throughout to denote matrices, normal typeface to denote scalars. Given a vectorX, we write its i'th component as Xi. We use the D operator to denote di�erentiation. Where thereis ambiguity regarding which variable di�erentiation is with respect to, we use superscripts on theD operator. For example, D10Q(�1;�2) is the �rst derivative of Q w.r.t. �1, D01Q(�1;�2) isthe �rst derivative w.r.t. �2.2.2 Maximum-likelihood EstimationIn general we have� a sample X = fX1; X2; :::Xng where each Xi is a random variable (a single value, or vector ofvalues).� A vector of parameters � such that we can de�ne the likelihood of the data P (Xj�). Wecan also de�ne the log-likelihood L(Xj�) = logP (Xj�). Often the Xis are independentlyidentically distributed (i.i.d.) so that L(Xj�) =Pi=1:::n logP (Xij�).If 
 is the parameter space, maximum-likelihood (ML) estimation involves setting the ML esti-mate �ML such that �ML = argmax�2
L(Xj�) (1)2.2.1 An exampleSuppose we toss a coin 6 times, and Xi = 1 if the i'th toss is heads, 0 if it is tails. Say our samplex = f1; 0; 0; 0; 1; 0g. Assume the coin has a probability p of being heads, 1� p of being tails, so that� = p. Then L(X = xj�) = nXi=1 log(P (Xi = xijp))= 2 log p+ 4 log(1� p) (2)4



We can maximize L by setting the derivative w.r.t. p equal to 0:d L(X = xj�)d p = 2p � 41� p = 0 (3)Solving this gives p = 26 , which is the \intuitive" estimate for p, the proportion of heads which havebeen seen in the sample.Another common example of maximum-likelihood estimation is when the components of X aredrawn i.i.d. from a normal distribution with unknown mean � and known variance �2. It's simpleenough to prove that the ML estimate for � is PXin , i.e., the sample mean.2.3 Su�cient StatisticsA statistic T(X) is any real or vector-valued function of the data X. Note that if T(X1) = T(X2)for two samples X1 and X2 such that X1 6= X2 then T reduces the data, by mapping di�erentsamples to the same value. T is su�cient if there are functions g(T(X);�) and h(X) s.t.P (Xj�) = g(T(X);�)h(X) (4)Typically, g(T(X);�) = P (T(X)j�) and h(X) = P (XjT(X). The crucial point is that when maxi-mizing P (Xj�) w.r.t. � we can simply maximize g(T(X);�), so the su�cient statistics summarisethe data { for ML estimation, once we know T we don't need to know anything else about the data.2.3.1 An exampleFor the coin-tossing example, if the sample size is n and the number of heads in the sample is Nh,then P (Xj�) = pNh(1� p)(n�Nh) (5)So T = (Nh; n) is su�cient.2.4 Exponential FamiliesAn important class of distributions is the exponential family, where the likelihood can be writtenP (Xj�) = fexp[XCi(�)Ti(X) + d(�) + S(X)]gIA(X) (6)IA is the indicator function over the set A, and A cannot depend on �. Note that T(X) =fT1(X); T2(X):::Tn(X)g is su�cient.If we de�ne the parameters � = f�1;�2; :::�ng such that Ci(�) = �i then these are calledthe natural parameters. This can be a useful simpli�cation, for example if when maximizing L wedi�erentiate w.r.t. �, where for the natural parameters the derivative is then a simple functioninvolving T. 5



2.4.1 An example: the normal distributionP (X j�) = 1�p2� exp[� (X � �)22�2 ]= exp[�X22�2 + ��2X � �22�2 � log�p2�] (7)In this case C(�) = f� 12�2 ; ��2 g, T(X) = fX2; Xg, d(�) = �22�2 � log�p2� The natural parametersare f� 12�2 ; ��2 g, being functions of the conventional parameters f�; �g.2.4.2 Other important propertiesBy noting that (by the de�nition of probability)Z P (Xj�) dX = 1 (8)it is easy to show d(�) = � log Z fexp[XCi(�)Ti(X) + S(X)]gIA(X) dX (9)Using15 (� log f(�)) = � f 0(�)f(�) , and assuming that we're using natural parameters (hence5PCi(�)Ti(X) =T(X)) d0(�) = �5 R fexp[PCi(�)Ti(X) + S(X)]gIA(X) dXR fexp[PCi(�)Ti(X) + S(X)]gIA(X) dX= �5 R fexp[PCi(�)Ti(X) + S(X)]gIA(X) dXexp[�d(�)]= �R T(X)fexp[PCi(�)Ti(X) + S(X)]gIA(X) dXexp[�d(�)]= � Z T(X)fexp[XCi(�)Ti(X) + S(X) + d(�)]gIA(X) dX= � Z T(X)P (Xj�) dX= �E[T(X)j�] (10)Now note that the log-likelihoodL(Xj�) = XCi(�)Ti(X) + d(�) + S(X) (11)15 refers to di�erentiation w.r.t. � 6



So to obtain the ML estimates by di�erentiating w.r.t. � (again, assuming natural parameters)L0(Xj�) = T(X) + d0(�)= T(X) �E[T(X)j�] (12)So setting T(X) = E[T(X)j�] will give L0(Xj�) = 0, and maximize the log-likelihood. For example,for a binomial distribution, the su�cient statistic T(X) = PXi and E[PXijp] = np where n isthe sample size and p is the binomial parameter. So solvingPXi = np gives the ML estimate of p.If we assume non-natural parameters, then (12) is modi�ed to giveL0(Xj�) = dC(�)d� [T(X)�E[T(X)j�]] (13)Solving T(X) = E[T(X)j�] is also a solution to (13), but this solution may not always exist { it maybe necessary to also solve (13) as it stands (see section 3.5.1 for an example whereT(X) = E[T(X)j�]has no solution, but dC(�)d� [T(X) �E[T(X)j�]] = 0 does have a solution.)3 The EM algorithmThe EM algorithm assumes the following problem de�nition: we have two sample spaces X and Y ,such that there is a many-one mapping Y = f(X) from an observation X in X to an observation Yin Y . We de�ne X (Y) = fX : f(X) = Yg (14)X is the complete data, and Y is the observed data. If the distribution f(Xj�) is well de�ned thenthe probability of Y given � is g(Yj�) = ZX (Y) f(Xj�) dX (15)EM attempts to solve the following problem: given a sample from Y is observed, but the corre-sponding X are unobserved, or hidden, �nd the maximum-likelihood estimate �ML which maxi-mizes L(�) = log g(Yj�). In general, log f(Xj�) will have an easily-de�ned, analytically solvablemaximum, but maximization of L(�) has no analytic solution. EM is an iterative optimisationalgorithm which de�nes a sequence of parameter settings through a mapping �t ! �t+1 such thatL(�t+1) � L(�t) with equality holding only at stationary points of L(�). Thus EM is a hill-climbing algorithm which, at least under certain conditions, will converge to a stationary point ofL(�).The mapping �t ! �t+1 is de�ned in two steps:1. The Estimation step. De�ne ~p(X) = p(XjY;�t). (Note that ~p(X) = 0 outside X (Y).)Calculate Q(�0;�t) = E [log f(Xj�0) j ~p(X)] = Z ~p(X) log f(Xj�0) dX (16)7



2. The Maximization step. Set �t+1 = argmax�0 Q(�0;�t).The intuition is as follows: if we had the complete data, we would simply estimate �0 to maximizelog f(Xj�0). But with some of the complete data missing we instead maximize the expectation oflog f(Xj�0) given the observed data and the current value of �.3.1 An exampleSay we observe a series of coin-tosses which we assume have been generated in the followingway: a person has two coins in her pocket. Coin 1 has probability of heads = p1, coin 2 hasprobability p2. At each point she chooses coin 1 with probability �, coin 2 with probability1 � �, and tosses it 3 times. Thus the observed data is a sequence of triples of coin tosses, e.g.Y = fhHHHi; hTTT i; hHHHi; hTTT ig. The complete data X, if we could observe it, would ad-ditionally show the coin chosen at each step, e.g. X = fhHHH; 1i; hTTT; 2i; hHHH; 1i; hTTT; 2ig.The parameters, all of which are to be estimated, are � = f�; p1; p2g.Assume that X is unobserved. Then the EM steps are as follows.1. The estimation step: de�ne ~pi = P (Xi = hYi; 1i j Yi;�), i.e. the probability of the i'th coinbeing coin 1, given the observed data and the current parameter settings. If Pc(Yijp) is theprobability of seeing Yi given a coin with prob of heads = p, then we havefi(Xi = hYi; 1i j �) = �Pc(Yijp1) (17)gi(Yi j �) = �Pc(Yijp1) + (1� �)Pc(Yijp2) (18)~pi = fi(Xi = hYi; 1i j �)gi(Yi j �) (19)= �Pc(Yijp1)�Pc(Yijp1) + (1� �)Pc(Yijp2) (20)~pi is the posterior probability of coin 1 having generated the i'th observation. If we de�ne Hias the number of heads in Yi then Pc(Yijp) = pHi(1 � p)3�Hi . Say �0 = f�0; p01; p02g. As thesamples are i.i.d., we can writeE [log f(Xj�0) j ~p(X)]= XE [log fi(Xj�0) j ~pi]= X ~pi log(fi(Xi = hYi; 1i j �)) + (1� ~pi) log(fi(Xi = hYi; 2i j �))= X ~pi log�0Pc(Yijp01) + (1� ~pi) log(1� �0)Pc(Yijp02)= X ~pi log�0p0Hi1 (1� p01)3�Hi + (1� ~pi) log(1� �0)p0Hi2 (1� p02)3�Hi= X ~pi log�0 + (1� ~pi) log(1� �0) + ~pi log p0Hi1 (1� p01)3�Hi + (1� ~pi) log p0Hi2 (1� p02)3�Hi(21)8



2. The Maximization step: Maximizing this function by setting the di�erentials w.r.t. �0, p01and p02 respectively to 0 gives the following update formulae:�0 = P ~pin (22)p01 = P Hi3 ~piP ~pi (23)p02 = P Hi3 (1� ~pi)P(1� ~pi) (24)These formulae have a nicely intuitive interpretation. � is the average posterior probability of coin1 having generated the i'th sample. p1 is a weighted average over the observations of the usual MLestimate, Hi3 , where the weight corresponds to ~pi, the posterior probability of coin 1 for Yi. Similarly,p2 is a weighted average over the observations, where the weight corresponds to 1� ~pi, the posteriorprobability of coin 2 generating Yi. See tables 1, 2 and 3 for examples of the EM algorithm for thisproblem.3.2 Proof that L(�) is non-decreasing at each iterationA crucial property of the EM algorithm is that the log-likelihood L(�) = log g(Yj�) is non-decreasing at each iteration. Formally, if we de�ne the EM mapping as �t ! �t+1 where �t+1 =argmax�0 Q(�0;�t) then L(�t+1) � L(�t). The proof rests on two results:1. De�ne k(XjY;�) to be the posterior likelihood of the complete data given the data Y and theparameters�, so that k(XjY;�) = f(Xj�)g(Yj�) . If we de�neH(�0;�) = E [log k(XjY;�0) j ~p(X)],(as before, ~p(X) = p(XjY;�)), thenL(�0) = Q(�0;�)�H(�0;�) (25)2. 8�0 H(�0;�) � H(�;�) (26)with equality i� log k(XjY;�0) = log k(XjY;�) almost everywhere.Given (25),L(�t+1)� L(�t) = fQ(�t+1;�t)�Q(�t;�t)g � fH(�t+1;�t)�H(�t;�t)g (27)But fQ(�t+1;�t)�Q(�t;�t)g � 0 (by the de�nition of the M step), and from (26) fH(�t+1;�t)�H(�t;�t)g � 0, so clearly L(�t+1)� L(�t) � 0.
9



Iteration � p1 p2 ~p1 ~p2 ~p3 ~p40 0.3000 0.3000 0.6000 0.0508 0.6967 0.0508 0.69671 0.3738 0.0680 0.7578 0.0004 0.9714 0.0004 0.97142 0.4859 0.0004 0.9722 0.0000 1.0000 0.0000 1.00003 0.5000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000Table 1: The coin example for Y = fhHHHi; hTTT i; hHHHi; hTTT ig. The solution that EMreaches is intuitively correct: the coin-tosser has two coins, one which always shows up heads, theother which always shows tails, and is picking between them with equal probability (� = 0:5). Theposterior probabilities ~pi show that we are certain that coin 1 (tail-biased) generated Y2 and Y4,whereas coin 2 generated Y1 and Y3.Iteration � p1 p2 ~p1 ~p2 ~p3 ~p4 ~p50 0.3000 0.3000 0.6000 0.0508 0.6967 0.0508 0.6967 0.05081 0.3092 0.0987 0.8244 0.0008 0.9837 0.0008 0.9837 0.00082 0.3940 0.0012 0.9893 0.0000 1.0000 0.0000 1.0000 0.00003 0.4000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000Table 2: The coin example for fhHHHi; hTTT i; hHHHi; hTTT i; hHHHig. � is now 0:4, indicatingthat the coin-tosser has probability 0:4 of selecting the tail-biased coin.Iteration � p1 p2 ~p1 ~p2 ~p3 ~p40 0.3000 0.3000 0.6000 0.1579 0.6967 0.0508 0.69671 0.4005 0.0974 0.6300 0.0375 0.9065 0.0025 0.90652 0.4632 0.0148 0.7635 0.0014 0.9842 0.0000 0.98423 0.4924 0.0005 0.8205 0.0000 0.9941 0.0000 0.99414 0.4970 0.0000 0.8284 0.0000 0.9949 0.0000 0.9949Table 3: The coin example for Y = fhHHT i; hTTT i; hHHHi; hTTT ig. EM selects a tails-only coin,and a coin which is heavily heads-biased (p2 = 0:8284). It's certain that Y1 and Y3 were generatedby coin 2, as they contain heads. Y2 and Y4 could have been generated by either coin, but coin 1 isfar more likely.
10



3.2.1 Proof of equation 25By the rules of conditional probability,k(XjY;�0) = f(Xj�0)g(Yj�0)log k(XjY;�0) = log f(Xj�0)� log g(Yj�0) (28)We can now take expectations w.r.t. ~p(X) = p(XjY;�):E [log k(XjY;�0) j ~p(X)] = E [log f(Xj�0) j ~p(X)]�E [log g(Yj�0) j ~p(X)]= E [log f(Xj�0) j ~p(X)]� log g(Yj�0) (29)(Note that E [log g(Yj�0) j ~p(X)] = log g(Yj�0) as log g(Yj�) does not depend on X.) So by thede�nitions of H , Q and L, H(�0;�) = Q(�0;�)� L(�0) (30)3.2.2 Proof of equation 26One thing to note is that H(�;�)�H(�0;�) is the Kullback-Liebler distance between k(XjY;�)and k(XjY;�0), which is known to be � 0 with equality only if the two distributions are equal.A formal proof is through the following theorem stated in (Rao 1e.6.6): Let f(X) and g(X) benon-negative and integrable functions, and S be the region in which f(X) > 0. The theorem statesthat if RS(f(X)� g(X))d X � 0, then RS f(X) log f(X)g(X) d X � 0.If we put f(X) = k(XjY;�) and g(X) = k(XjY;�0) then clearly RS(f(X) � g(X))d X � 0, asRS f(X)d X = 1 and by the laws of probability RS g(X)d X � 1. HenceZS f(X) log f(X)g(X) d X = ZS k(XjY;�) log k(XjY;�)k(XjY;�0) � 0But H(�;�) �H(�0;�) = E [log k(XjY;�) j ~p(X)]�E [log k(XjY;�0) j ~p(X)]= ZS k(XjY;�) log k(XjY;�) � ZS k(XjY;�) log k(XjY;�0)= ZS k(XjY;�) log k(XjY;�)k(XjY;�0)� 0 (31)3.3 Proof that L(�) is increasing if � is not a stationary point of LThe result given in DLR, that L(�t+1) � L(�t), is not all that useful, as the likelihood couldremain at the same value at any iteration: for example the trivial mapping �t+1 =�t would satisfy11



it with equality. (Wu 1983) proves the more useful result that if L is the set of stationary pointsof L in 
, where 
 is the space of �, then L(�t+1) > L(�t) for any �t =2 L. So this says that Lwill increase unless the algorithm has already reached a stationary point of L. This is one necessarycondition for convergence to a stationary point of L.The proof is as follows: from (25) we can writeL(�t) = Q(�t;�t)�H(�t;�t) (32)Di�erentiating gives DL(�t) = D10 Q(�t;�t)�D10 H(�t;�t) (33)From (26), � =�t maximizes H(�;�t), so D10 H(�t;�t) = 0, thereforeDL(�t) = D10 Q(�t;�t) (34)If �t =2 L then DL(�t) 6= 0, so D10 Q(�t;�t) 6= 0. Therefore we cannot be at a maximum of Q,hence given that �t+1 maximizes Q(�;�t) we have8�t =2 L Q(�t+1;�t) > Q(�t;�t) (35)From (25), (26) and (35) it is clear that8�t =2 L L(�t+1) > L(�t) (36)3.4 Generalised EM (GEM) algorithmsDLR de�ned a GEM algorithm to be any iterative scheme �t ! �t+1 such that Q(�t+1;�t) �Q(�t;�t). The point here is that it is not necessary to maximize Q at each step, instead it issu�cient for Q to simply increase at each step to ensure that L(�t+1) � L(�t). In some situationsit is less computationally demanding to increase Q at each step rather than to maximize it. ClearlyEM algorithms are a special case of GEM algorithms.As it stands, this de�nition is 
awed. An additional criterion is required for L to converge to astationary point, namely 8�t =2 L Q(�t+1;�t) > Q(�t;�t) (37)i.e. Q must be strictly increasing if we have not reached a stationary point of L. Note that EMalgorithms automatically satisfy (37) by the proof in section 3.3. (Wu 83) identi�ed this 
aw in thede�nition of GEM algorithms, and states additional conditions (see Theorem 1 of (Wu 83), describedin section 4.1) which guarantee convergence. Without the additional conditions non-convergentalgorithms such as the trivial �t+1 = �t satisfy the GEM de�nition.3.5 Special Cases of the EM AlgorithmThe generality of the EM formulation is extremely useful, but also means that Q has to be de�ned foreach problem, and furthermore that a method for maximizing Q must be found for each case. Thissection describes a few special cases of EM problems where Q has been de�ned and the maximizationstep has a simple analytic solution. 12



3.5.1 Exponential FamiliesHere the complete data is generated from a distribution which is a member of the exponential family,that is f(Xj�) = fexp[PCi(�)Ti(X) + d(�) + S(X)]gIA(X). DLR show that in this case thefollowing is an EM algorithm:1. Expectation step. As before, de�ne ~p(X) = p(XjY;�t). CalculateTp = E [T(X) j ~p(X)] (38)2. Maximization step. Find �0 such thatE [T(X)j�0] = Tp (39)Note that (39) is very similar to the usual ML solution for exponential families, setting T(X) =E[T(X)j�0] (see section 2.4.2), except we set E[T(X)j�0] to be the expected value of the su�cientstatistics given the observed data and the current �, instead of calculating the su�cient statisticsfrom the complete data which is unobserved.The proof that this procedure maximizes Q is as follows:Q(�0;�) = Z ~p(X) log f(Xj�0) dX= Z ~p(X) hXCi(�0)Ti(X) + d(�0) + S(X)i dXD10Q(�0;�) = Z ~p(X)[dC(�0)d� T (X) + d0(�0)] dX= E �dC(�0)d� T (X) j ~p(X)�+E [d0(�0) j ~p(X)]= dC(�0)d� E [T (X) j ~p(X)] + d0(�0)= dC(�0)d� (E [T (X) j ~p(X)]�E [T (X) j �0]) (40)So (38), (39) give D10Q(�0;�) = 0, and therefore maximize Q, the required result.A solution to (39) may not actually exist, and a more general formulation of the maximizationstep is to set dC(�0)d� [Tp �E [T(X)j�0]] = 0 (41)An example. DLR present an initial motivating example for EM. Say the complete dataX = (x1; x2; x3; x4; x5) is drawn from a multinomial distribution ( 12 ; �4 ; 1��4 ; 1��4 ; �4 ). The observeddata Y = (y1; y2; y3; y4) = (125; 18; 20; 34), and y1 = x1 + x2, y2 = x3, y3 = x4, y4 = x5. Thus x1and x2 are hidden, while x1+x2 is observed. The log-likelihood of the complete data can be writtenlog f(X j �) = x1 log 12 + x2 log �4 + x3 log 1� �4 + x4 log 1� �4 + x5 log �4 + S(X) (42)13



where S(X) is a multinomial coe�cient. This is then an exponential distribution, with su�cientstatistics T(X) = (x1; x2; x3; x4; x5) and C(�) = (log 12 ; log �4 ; log 1��4 ; log 1��4 ; �4 ). While x3; x4; x5are observed, the expectation step involves estimating xp1 and xp2 given the current parameter settingsand the observed data Y. This givesxp1 = E [x1 j Y; �] = 125 1212 + �4 (43)xp2 = E [x2 j Y; �] = 125 �412 + �4 (44)Then E [T(X) j Y; �] = (xp1 ; xp2; x3; x4; x5). We can also calculateE [T(X) j �] = n( 12 ; �4 ; 1��4 ; 1��4 ; �4 )where n = y1 + y2 + y3 + y4. DLR's maximization step (39) givesE [T(X) j �0] = E [T(X) j Y; �]n(12 ; �04 ; 1� �04 ; 1� �04 ; �04 ) = (xp1; xp2; x3; x4; x5) (45)where �0 is the new value for �. However this does not have a solution for �0, so it fails as amaximization step (for example, it requires x3 = x4 = n 1��04 , but x3 = 18, x4 = 20). If we insteaduse the more general formula in (41), noting that dC(�)d� = (0; 1� ; �11�� ; �11�� ; 1� ), then the maximizationstep becomes(0; 1�0 ; �11� �0 ; �11� �0 ; 1�0 )� fn(12 ; �04 ; 1� �04 ; 1� �04 ; �04 )� (xp1; xp2; x3; x4; x5)gT = 0xp2 + x5�0 � x3 + x41� �0 = 0�0 = xp2 + x5xp2 + x3 + x4 + x5 (46)This is precisely the solution given in equation (1.5) of DLR.3.5.2 Algebraic Models(La�erty) describes an important class of EM problem | EM applied to algebraic models. Say� = fp1; p2; :::png is the combination of m multinomial distributions 
1;
2; ::
m such that the 
sare disjoint subsets (forming a partition of f1; 2; 3::ng) of the integers f1; 2; :::; ng and fpi : i 2 
jgare the parameters of the j'th multinomial, so that Pi2
j pi = 1. The probability of the completedata can be written f(Xj�) = Yi2
1 pC(i;X)i Yi2
2 pC(i;X)i ::: Yi2
m pC(i;X)i (47)where C(i;X) is the count of the event in X which corresponds to pi | C(i;X) are the su�cientstatistics for X. In this case, if �0 = fp1; p2; :::png then the Q function is:Q(�0;�) = X ~p(X) Xi2
1 C(i;X) log pi +X ~p(X) Xi2
2 C(i;X) log pi + :::X ~p(X) Xi2
m C(i;X) log pi(48)14



We can maximize Q by maximizing each of these double sums separately. This gives m constrainedoptimisation problems, for example maximizeQ1(�0;�) = X ~p(X) Xi2
1 C(i;X) log pi (49)subject to the constraint Xi2
1 pi = 1 (50)Using Lagrange multipliers, the unconstrained problem is to maximizeQ̂1(�0;�) = X ~p(X) Xi2
1 C(i;X) log pi � � Xi2
1 pi (51)Taking partial derivatives w.r.t. pj and setting them to 0 givesdQ̂1(�0;�)dpj = X ~p(X)C(j;X)pj � � = 0) pj = P ~p(X)C(j;X)� (52)If we de�ne ~C(j;X) =P ~p(X)C(j;X) and �nd � s.t. Pi2
1 pi = 1, thenpj = ~C(j;X)Pi2
1 ~C(i;X) (53)~C(j;X) can be interpreted as the expected count corresponding to parameter pj , and pj is then thenormalised expected count.Examples of algebraic models Hidden markov models are an important class of algebraicmodel. An EM algorithm for HMMs was �rst suggested by [Baum 71]. An HMM has n statesfs1; s2:::sng. There are n�n transition probabilities, P (si ! sj) such thatPj=1::n P (si ! sj) = 1.Initial and �nal states are de�ned, without loss of generality we take the initial state to be s1, the�nal state to be sn. Given an output alphabet � s.t. j�j = m, there are also n � m emissionprobabilities p(i " j), where this is the probability of state si emitting symbol j. The observed datais a sequence of symbols from �, and the complete data is this sequence together with the underlyingsequence of states which generated this data.Say we observe an output sequence fo1; o2; ::::olg, and the state sequence is fq1; q2; :::qlg (exclud-ing the initial and �nal states). Then the probability of the complete data isf(fo1; o2; ::::olg; fq1; q2; :::qlg j �) =Y p(s1 ! q1)p(q1 ! q2)p(q2 ! q3):::p(ql ! sn)�Y(q1 " o1)(q2 " o2)::::(ql " ol) (54)15



If C(si ! sj) is the number of times we see p(si ! sj) in the �rst product, and C(si " j) is thenumber of times we see p(si " j) in the second product, then we can re-write this asf(fo1; o2; ::::olg; fq1; q2; :::qlg j �) =Yi=1::n Yj=1::n p(si ! sj)C(si!sj) � Yi=1::n Yj=1::m p(si " j)C(si"j) (55)Thus this de�nes an algebraic model with 2n multinomial distributions. We can de�ne the EMalgorithm for HMMs using the general method shown above. The result is a set of expected counts,~C(si ! sj) and ~C(si " j), withp(si ! sj) = ~C(si ! sj)Pk=1::n ~C(si ! sk) p(si " j) = ~C(si " j)Pk=1::m ~C(si " k) (56)Note thatPk=1::n ~C(si ! sk) =Pk=1::m ~C(si " k) is the expected number of times the model was instate si given the observed data and the current parameter values. A naive algorithm for this problemwould be the following: for every possible state sequence, calculate f(fo1; o2; ::::olg; fq1; q2; :::qlg j �),and the su�cient statistics for X = ffo1; o2; ::::olg; fq1; q2; :::qlgg. From f calculate the marginalk(fq1; q2; :::qlg j fo1; o2; ::::olg;�). From the marginal probabilities and su�cient statistics for eachstate sequence, calculate the expected counts and from these the parameter values. This algorithmis unworkable though, given that the number of state sequences nl is exponential. Fortunatelythe forward-backward algorithm given in [Baum 71] gives a dynamic programming algorithm forcalculation of the expected counts, which runs in O(n2l) time.3.6 Summary of the 4 Theorems in DLRIn the following section we take M(�) to de�ne a GEM algorithm, that is Q(M(�);�) � Q(�;�)for all �. DLR states 4 central theorems with respect to GEM algorithms.3.6.1 Theorem 1For every GEM algorithm, L(M(�)) � L(�), with equality if and only if both Q(M(�);�) =Q(�;�) and k(X j Y;M(�)) = k(X j Y;�) almost everywhere. The proof is in section 3.2.Corollary 1. Suppose for some ��, L(��) � L(�) for all �, i.e. �� is a (possibly non-unique) global maximum of L. Then L(M(��)) = L(��), Q(M(��);��) = Q(��;��) andk(X j Y;M(��)) = k(X j Y;��) almost everywhere. Hence if EM reaches a global maximum,the likelihood remains �xed at this point.Corollary 2. Suppose for some ��, L(��) > L(�) for all � 6= ��, i.e. �� is a unique globalmaximum of L. Then for every GEM algorithmM(��) = ��. So if EM has reached a unique globalmaximum, the parameter values remain unchanged at each iteration.3.6.2 Theorems 2 and 3Theorems 2 and 3 attempted to show that under certain conditions � converges to some point��. Note that L(�) will usually converge to some value L� ((Wu 83) de�nes the exact conditions16



required for this to be the case), but this does not imply that � also converges { � could, forexample, be oscillating between points nearby two local maxima with the same maximal value L�.Unfortunately, as noted by (Wu 1983), a key step of the DLR proof is wrong, namely the applicationof the triangle inequality to go from step (3.13) to (3.14). Because of this both theorems 2 and 3are invalid.3.6.3 Theorem 4It is useful to be able to calculate the rate of convergence of an EM algorithm. For the one parametercase where � converges to a point �� we can de�ne the rate of convergence R�p = �p+1����p��� . Thiscan be interpreted as the reduction in the distance to �� when going from �p to �p+1, for exampleif �� = 0:5, �p = 1:0, �p+1 = 0:75 then R�p = 0:5, i.e. the distance to �� is halved. It's possibleto prove that lim�p!��R�p =M 0(��) where M 0(�) = dM(�)d� . So if we can calculate M 0(��), thenwe have an estimate of the rate of convergence close to ��.Proof. Say �p = �� + �. Then �p+1 = M(�� + �). Noting also that M(��) = ��, as �� is amaximum of L, R�p = �p+1 ����p ���= M(�� + �)����� + � ���= M(�� + �)�M(��)� (57)So, lim�p!��R�p = lim�!0 M(�� + �)�M(��)� = dM(�)d� (58)This can be generalised to the multiparameter case: R = dM(�)d� = DM(�) is a vector of ratesof convergence, where the i'th component of R is the rate of convergence of the i'th parameter in�. Theorem 4 of DLR states thatDM(��) = D20H(��;��) �D20Q(��;��)��1 (59)under the following conditions:1. �p converges to some ��.2. D10Q(�p+1;�p) = 0. This means that Q is maximized at each iteration, EM algorithmssatisfy this condition, as do GEM algorithms which �nd a stationary point of Q at eachiteration.3. D20Q(�p+1;�p) is negative de�nite with eigenvalues bounded away from 0.17



An example. If we return to the example in section 3.5.1, we can calculate D20Q(�0; �) andD20H(�0; �) as follows:From (40)D10Q(�0; �) = (0; 1�0 ; �11� �0 ; �11� �0 ; 1�0 )� fn(12 ; �04 ; 1� �04 ; 1� �04 ; �04 )� (xp1; xp2; x3; x4; x5)gT= xp2 + x5�0 � x3 + x41� �0 (60)(This is the quantity we set to 0 in the maximization step (46)). Di�erentiating again givesD20Q(�0; �) = �xp2 + x5�02 � x3 + x4(1� �0)2 (61)This is the value given on page 10 ofDLR. To calculateD20H(�0; �) we note that L(�0) = Q(�0; �)�H(�0; �), so that D20H(�0; �) = D20Q(�0; �)�D2L(�0) We haveL(�0) = y1 log(2 + �04 ) + x3 log 1� �04 + x4 log 1� �04 + x5 log �04 + S(X)D1L(�0) = y12 + �0 � x3 + x41� �0 + x5�0D2L(�0) = � y1(2 + �0)2 � x3 + x4(1� �0)2 � x5�02 (62)So D20H(�0; �) = D20Q(�0; �)�D2L(�0)= �xp2 + x5�02 � x3 + x4(1� �0)2 � f� y1(2 + �0)2 � x3 + x4(1� �0)2 � x5�02 g= � xp2�02 + y1(2 + �0)2 (63)Again, this is the value given on page 10 of DLR.4 (Wu 83)'s Commentary on the EM algorithm(Wu 83) addresses two points concerning the EM algorithm:1. If L converges to some L�, what is the nature of L�? (A global maximum, local maximum,stationary value or other point?) He shows that in general there can only be a guarantee that L�is a stationary value (i.e. a local/global maximum or a saddle point), and speci�es conditionsunder which L� falls into these categories (without these conditions, L� could potentially beany value). 18



2. Under what conditions does � converge to some ��? Note that even if L converges, � maynot converge, for example it could oscillate between points on two local maxima which havethe same maximum.(Wu 83) makes the following assumptions throughout, so they can be taken as preconditions ofevery theorem stated in this section:� 
 is a subset in the r-dimensional Euclidean space Rr.(
 is the parameter space so � 2 
). (64)� 
�0 = f� 2 
 : L(�) � L(�0)g is compact for any L(�0) > �1. (65)� L is continuous in � and di�erentiable in the interior of 
. (66)As a consequence of these conditions it follows that� fL(�p)gp�0 is bounded above for any �0 2 
. (67)4.1 Is L� a global maximum, local maximum or stationary value?We de�ne the following subsets of 
:� M is the set of local maxima in the interior of 
.� L is the set of stationary points in the interior of 
.From this it follows that L nM is the set of saddle points in 
 (the set of stationary points whichare not local maxima).4.1.1 Theorem 1Let f�pg be a GEM sequence generated by �p+1 2 M(�p). Then L converges monotonically toL� = L(��) for some �� 2 L under the following conditions:i) M is a closed point-to-set map over the complement of L (we de�ne closed point-to-set maps insection 4.1.6 below).ii) L(�p+1) > L(�p) for all �p =2 LThis theorem also holds if we replace every mention of L with M { this gives a similar theorembut for the conditions for convergence to a local maximum rather than just any stationary point.4.1.2 Theorem 2Section 3.3 showed that for EM algorithms (as opposed to any GEM algorithm) condition (ii) oftheorem 1 holds for the L (stationary value) case. M can be shown to satisfy condition (i) if Q(�0;�)is continuous in both �0 and �. This leads to theorem 2:If Q(�0;�) is continuous in both �0 and �, then all the limit points of an EMalgorithm are stationary points of L and L converges monotonically to L� = L(��) forsome �� 2 L. 19



4.1.3 Theorem 3Theorem 2 guarantees convergence to a stationary value, but this stationary value could be a saddlepoint (a member of L n M). The problem is that EM satis�es condition (ii) of Theorem 1 forstationary values�p =2 L, but there may be saddle points�s 2 LnM such that L(M(�s)) = L(�s).Theorem 3 states that convergence to a local maximum is guaranteed if every saddle point of L isnot a global maximum of Q(�0;�) w.r.t �0. From (34) DQ = 0 at any saddle point of L, so thismust mean that any saddle point of L is a saddle point or local maximum of Q, but not the globalmaximum of Q. If this condition is satis�ed then (given that EM maximizes Q at each step) Q willincrease even at the saddle point, and L will also increase.4.1.4 Summary of Theorems 1, 2 and 3To summarise these theorems, when designing a GEM or EM algorithm:� For GEM algorithms check that conditions (i) and (ii) of theorem 1 hold, and the algorithmwill then converge to some point in L (or M for the version of theorem 1 regardingM).� For EM algorithms check that Q(�0;�) is continuous in both �0 and �, then by theorem2 the algorithm will converge to some point in L. In addition, if it can be shown that everysaddle point of L is not a global maximum of Q, then L will converge to some point in M.4.1.5 Example of Convergence to a Saddle PointIf we return to the example in section 3.1, but initialise p1 and p2 to the same value, we get thebehaviour in table 4.Theorem 3 is violated for this example, and in general it's hard to guarantee this theorem'srequirement. (Wu 83) suggests that it's important when running EM to try several starting points,and to randomly select initial parameter values, in particular to avoid symmetries such as p1 = p2in the last example. Note that if we initialise p1 and p2 even slightly di�erently from each other weget convergence to the global maximum, see table 5.4.1.6 Proof of Theorem 1The proof rests on the Global Convergence Theorem, which is stated and proved in (Zangwill 69):Say fxkg1k=0 is generated by xk+1 2M(xk), whereM is a point-to-set map on X . (A point-to-setmap on X is a function from points in X to subsets of X). Let a solution set � be given. Supposethat:1. All points xk are contained in a compact set S � X .2. M is closed over the complement of �. \Closedness" is a generalisation to point-to-set mapsfrom continuity of a point-to-point map; for a point-to-point map continuity implies closedness.3. There is a continuous function � on X such that20



(a) if x =2 �, �(y) > �(x) for all y 2M(x).(b) if x 2 �, �(y) � �(x) for all y 2M(x).Then all limit points of fxkg are in the solution set � and �(xk) converges monotonically to �(x)for some x 2 �.If we take M as a GEM algorithm, � = L and � = L (or M for Theorem 1 for M), GEMalgorithms always satisfy the following conditions:� Condition (1). If �0 is such that L(�0) > �1 then, given that L is non-decreasing for aGEM algorithm, all points xk are contained in 
�0 , which by assumption (65) is compact.� Condition (3b). This comes from L being non-decreasing at each iteration of a GEM algo-rithm.The remaining conditions | (2) and (3a) | are conditions (i) and (ii) of Theorem 1, hence ifTheorem 1 holds then the global convergence theorem holds. Theorems 2 and 3 follow from Theorem1.4.1.7 Corollary 1(Wu 83) states one additional result concerning the convergence of L to L�, corollary 1 to Theorem6: Suppose L(�) is continuous in 
 with �� being the only stationary point and thatD10Q(�0;�) is continuous in both �0 and �. Then for any EM sequence f�pg, �pconverges to the unique maximizer �� of L(�).4.2 Does � Converge to a point ��?Say f�pg is an instance of a GEM algorithm which satis�es theorem 1. De�ne L(�) = f� : L(�) =�g. Then by theorem 1 L converges to L� and all the limit points of f�pg are in L(L�). Theorems4 and 5 of (Wu 83) then give conditions where � converges to a point ��.4.2.1 Theorem 4If L(L�) = f��g, that is there is only one stationary point of L at which L is L�, then �! ��.4.2.2 Theorem 5If jj�p+1 ��pjj ! 0 as p ! 1 then all the limit points of �p are in a connected and compactsubset of L(L�). In particular, if L(L�) is discrete, then � ! �� where �� is some member ofL(L�).
21



4.3 The Non-convergent GEM Algorithm given in (Boyles 83)(Boyles 83) gives an algorithm which satis�es the GEM de�nition in DLR, and is interesting in tworespects:1. It does not converge to a stationary point of the likelihood function.2. � does not converge to some point ��.It is useful to examine this example in the context of (Wu 83)'s theorems. The basic idea of (Boyles83) is to de�ne a GEM algorithm for a two parameter problem, maximization of L(�1; �2). If y1; y2are the ML-estimates for �1; �2, then in their example it can be shown that all points �1; �2 whichlie on a circle of radius r centered on y1; y2 give the same value for L(�1; �2). Moreover, the lowerthe value of the radius r the more L increases. The GEM algorithm given then de�nes the mapping�k1 ; �k2 ! �k+11 ; �k+12 such that the parameter values spiral in, with the radius decreasing at eachpoint, such that the limit of the parameter values is to rotate on the circle at r = 1. Clearly thealgorithm fails to reach the maximal point at r = 0, and � does not converge, instead in the limitthe parameters continually traverse the circle. So which convergence criteria in (Wu83) does thealgorithm fail?First, it fails Theorem 1 condition (ii). For any r � 1 the radius remains constant at eachiteration, hence the likelihood also remains constant. But r = 0 is the only stationary point of L inthe problem, so Theorem 1 condition (ii) is violated.Second, it fails the requirements of both theorems 4 and 5. L converges to a value L� which hasmany values of �1; �2 such that L(�1; �2) = L�, in fact any �1; �2 which lie on the circle of radius 1.And it is clear that jj�p+1 ��pjj ! 0 is not satis�ed.5 (Jamshidian and Jennrich 93)(JJ 93) further emphasise that the EM algorithm is an optimisation algorithm, and apply a standardoptimisation algorithm, generalised conjugate gradient descent.5.1 Optimisation of Quadratic Functions(Zangwill 69 Chapter 6) describes Conjugate-Gradient methods for optimisation. Taking a Taylor'sexpansion (page 326 of Zangwill 69) about a local maximum of L at ��, givesL(Xj�� + ��) � L(Xj��) +D1L(Xj��)��+ 12��TD2L(Xj��)�� (68)Where D1::: and D2::: are the �rst and second derivatives of L with respect to �. Taylor's theoremshows that this approximation becomes increasingly accurate as ��! 0. Thus we have a quadratic(second-order) approximation to L close to a maximal point.Gradient-based optimisation algorithms draw heavily on results for optimisation of a quadraticfunction such as f(Z) = c+ bTZ+ 12ZTAZ (69)22



The most obvious optimisation algorithm is steepest descent: at each point calculate the gradientDf , and move in this direction to the point which maximizes f(Z + �Df) where � is the distancemoved in the gradient's direction.A crucial result is that steepest descent algorithms can be very poor as optimisation algorithmsfor quadratic functions, whereas conjugate gradient methods maximize a quadratic in at most p stepsfor a p-variate quadratic. If we assume that the function being optimised is well approximated bysome quadratic, then we can assume that these results carry over to the function: steepest gradientwill be considerably poorer than a conjugate gradient method based on the quadratic approximationof the function.5.1.1 Conjugate Gradient MethodsGiven an n�n symmetric matrix A, the directions d1; d2:::dn are said to be A-conjugate if they arelinearly independent, and dtiAdj = 0 for i 6= j.It can then be shown that for a quadratic function f(Z) = c+bTZ+ 12ZTAZ, given n conjugatedirections and a starting point Z0, then the following algorithm will maximize a quadratic in n steps(i.e. Zn maximizes f):� For k = 1:::n, �nd the �k which maximizes f(Zk�1 + �kdk). Set Zk = Zk�1 + �kdk.All that remains, then, is to �nd an algorithm which constructs d1; d2::dn for a given quadratic.Conjugate gradient methods are remarkable in that they �nd d1; d2:::dn without knowledge of A.This is important when maximizing a function using a Taylor approximation such as (68), in thatthere is no need to calculate the Hessian of the function (in the example, D2L), a step which canbe computationally expensive. A conjugate algorithm proceeds as follows:� For an arbitrary starting point Z0, let d1 = f 0(Z0), where f 0 is the �rst derivative of f .� For k = 1:::n,{ set Zk = Zk�1 + �kdk, where �k maximizes f(Zk�1 + �kdk).{ Calculate dk+1 = f 0(Zk) + �kdk.The most commonly used values for �k are (where gk = f 0(Zk)):� The Fletcher-Reeves version �k = gTk+1gk+1gTk gk� The Polak-Ribiere algorithm �k = (gk+1�gk)Tgk+1gTk gk . When maximizing a quadratic this is thesame as the Fletcher-Reeves algorithm (as gTk gk+1 = 0). The di�erence becomes importantwhen maximizing an approximation to a quadratic, where Polak-Ribiere updates have beenshown to be better in some cases.
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5.1.2 Generalised Conjugate Gradient MethodsA generalised conjugate gradient method is identical to the algorithm in section 5.1.1, except thegradients are modi�ed by some positive de�nite matrixW. So every mention of f 0 in section 5.1.1 isreplaced byW�1f 0. (JJ 93) state that the use of an appropriate matrixW can signi�cantly improvethe performance of any optimisation algorithm which uses gradients.5.2 Accelerating EM using Generalised Conjugate Gradients(JJ 93) �rst show that EM is approximately a steepest descent algorithm optimising L with thegeneralised gradient ~g = W�1g(�) where W = (�D20Q(�0;�0)). They do this by proving thatan EM step �! �0 is such that�0 �� � (�D20Q(�0;�0))�1g(�) (70)where g(�) = D1L(�). (JJ 93) then de�ne a conjugate gradient method based on the approximategeneralised gradients ~g(�) = �0 ��. The k'th iteration of this algorithm is:1. Perform the k'th EM step to �nd �0 and calculate ~gk+1 = �0 ��k.2. At the �rst and every pth step thereafter, where p = the number of parameters in �, setdk+1 = ~g(�). At other steps:(a) Calculate gk = D1L(�k).(b) Set �k = ~gTk+1(gk+1�gk)dTk (gk+1�gk) . This is an alternative to the Fletcher-Reeves and Polak-Ribiereupdates.(c) Set dk+1 = ~gk+1��kdk.3. Find �k, the value of � which maximizes L(�k + �dk+1), and set �k+1 = �k + �kdk+1.It can be seen that the algorithm involves a modest increase in complexity over the EM algorithm,mainly the calculation of gk = D1L(�k). (JJ 93) then pick a few example applications, and �ndthat their algorithm is a around 3-10 times faster than EM on usual examples, and can be 25-100times faster on cases where EM converges particularly slowly.5.3 DiscussionWhile the results in (JJ 93) are impressive, there are a number of points which are unanswered inthe paper:� They justify the (unusual) choice of �k because it gives conjugate gradients even when the linesearchs for the �k's aren't exact. But they neither prove this, nor provide a citation.
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� They stress that the choice of W can be crucial when using generalised gradients. But theynever given any justi�cation of why W = (�D20Q(�0;�0)) might be a good choice for W.In particular they do not compare their algorithm to a standard conjugate gradient algorithm,which would also require the calculation of gk but would not require the EM step to calculate~gk.� The method presumably becomes increasingly useful as the maximum of L is approached,as the quadratic approximation becomes increasingly accurate. The method runs a few EMiterations at the start of the algorithm until change in likelihood falls below a certain threshold.No real justi�cation is given for this threshold, nor are tests done to see how robust the methodis to the choice of this parameter (and no indication is given of how much this parameter wastuned to the particular problems used).6 ConclusionsThe following is a summary of the major points in this paper:� To derive an EM or GEM algorithm �rst �nd the function Q(�0;�) as de�ned in section 3.An EM mapping f : �k ! �k+1 is then f(�) = argmax�0 Q(�0;�). A GEM mapping isany f : �k ! �k+1 such that Q(f(�);�) � Q(�;�).� Section 3.2 then contains the proof, given in DLR, that L(�k+1) � L(�k) for EM andGEM algorithms. (Wu 83) also proved that for any EM algorithm, L(�k+1) > L(�k) atany non-stationary point, (see section 3.3) though this is not necessarily true for any GEMalgorithm.� Section 3.5 gives a couple of special cases { namely the exponential family of distributions, andalgebraic models { where it is easy to derive Q and the parameter values which maximize Q.Note that the M-step for exponential families given in DLR, (39), may not have a solution,and does not have a solution for the motivating multinomial example given at the start ofDLR. When no solution is found, the more general (41) should be used.� Section 3.6.3 describes a method for calculating the rate of convergence of an EM algorithm,as described in DLR Theorem 4. The theory requires calculation of the Hessians of the Q andH functions at the local maximum.� (Wu 83) gives further conditions for the convergence of an EM or GEM algorithm to a sta-tionary point of L. For an EM algorithm the most important criterion is that Q is continuousin both its parameters. See section 4.1 for the exact criteria for convergence. Major points arethat convergence to a global maximum can not, in general, be guaranteed, and furthermoreconvergence to a saddle point is possible { theorem 3 of (Wu 83) gives criteria for convergenceto a local maximum rather than a saddle point, but these criteria are unlikely to apply andare hard to prove. \Common wisdom" seems to be that parameter values should be randomlyinitialised to avoid symmetries which can lead to convergence to saddle points, and that EMshould be run a few times with di�erent starting points.25



� Section 4.2 gives the theorems provided by (Wu 83) which state conditions for the estimateof � to also converge. In most applications convergence of the estimate of � is probably lessimportant than convergence of L though.� (JJ 93) show that EM is approximately a steepest descent algorithm, and describe a fairlysimple modi�cation that gives a conjugate-gradient optimisation algorithm. This is shownto improve performance on a number of problems. The major additional complexity of themethod is the calculation of DL at each iteration.In conclusion, DLR provided a very general framework for de�ning iterative algorithms which�nd local maxima of the log-likelihood in incomplete data problems. However, as they de�ned EMand GEM there was not a guarantee of convergence to a stationary point of L, (Wu 83) considerablytightened the theory by giving strict conditions for convergence. (JJ 93) show that EM, while havingthe advantage of simplicity, may be a poor algorithm in some situations, and used existing algorithmsin the optimisation literature to improve convergence rates.A major weakness in EM-style algorithms is the guarantee concerning the nature of the limitpoint | global maximum, local maximum or saddle point? While examples like that in section 4.1.5suggest that perturbing the parameters slightly will result in the parameters diverging from thesaddle point, and DLR page 10 suggest that this will always be the case, as far as we know thereis no general theory about the \stability" of a saddle point, or a general method for perturbingthe parameters in such a way that the algorithm diverges from the saddle point. Nor, as far as weknow, is there any general theory about the nature of the log-likelihood surface | conditions underwhich it has a single global maximum, or under which it has no saddle points. While it may be verydi�cult to formulate theories about the general case, it seems that it would be possible for special(but extremely common) cases like HMMs or mixture models.References[Baker 79] Baker, J. (1979). Trainable Grammars for Speech Recognition. In Jared J. Wolf andDennis H. Klatt, editors, Speech Communication Papers for the 97th Meeting of theAcoustical Society of America, pages 547-550, MIT, Cambridge, Mass.[Baum 71] Baum, L.E. (1971). An Inequality and Associated Maximization Technique in StatisticalEstimation for Probabilistic Functions of Markov Processes. In Inequalities, III: Proceed-ings of a Symposium. (Shish, Qved ed.). New York: Academic Press.[BD 77] Bickel and Docksum (1977). Mathematical Statistics: Basic Ideas and Selected Topics.Prentice Hall, Englewood Cli�s, New Jersey.[Boyles 83] Boyles, R.A. (1983). On the Convergence Properties of the EM Algorithm. Journal ofthe Royal Statistical Society, Ser B, 44, 47-50.[DLR] Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). Maximum Likelihood from In-complete Data Via the EM Algorithm, Journal of the Royal Statistical Society, Ser B,39, 1-38. 26
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Iteration � p1 p2 ~p1 ~p2 ~p3 ~p40 0.3000 0.7000 0.7000 0.3000 0.3000 0.3000 0.30001 0.3000 0.5000 0.5000 0.3000 0.3000 0.3000 0.30002 0.3000 0.5000 0.5000 0.3000 0.3000 0.3000 0.30003 0.3000 0.5000 0.5000 0.3000 0.3000 0.3000 0.30004 0.3000 0.5000 0.5000 0.3000 0.3000 0.3000 0.30005 0.3000 0.5000 0.5000 0.3000 0.3000 0.3000 0.30006 0.3000 0.5000 0.5000 0.3000 0.3000 0.3000 0.3000Table 4: The coin example for Y = fhHHHi; hTTT i; hHHHi; hTTT ig, with p1 and p2 initialisedto the same value. EM is stuck at a saddle pointIteration � p1 p2 ~p1 ~p2 ~p3 ~p40 0.3000 0.7001 0.7000 0.3001 0.2998 0.3001 0.29981 0.2999 0.5003 0.4999 0.3004 0.2995 0.3004 0.29952 0.2999 0.5008 0.4997 0.3013 0.2986 0.3013 0.29863 0.2999 0.5023 0.4990 0.3040 0.2959 0.3040 0.29594 0.3000 0.5068 0.4971 0.3122 0.2879 0.3122 0.28795 0.3000 0.5202 0.4913 0.3373 0.2645 0.3373 0.26456 0.3009 0.5605 0.4740 0.4157 0.2007 0.4157 0.20077 0.3082 0.6744 0.4223 0.6447 0.0739 0.6447 0.07398 0.3593 0.8972 0.2773 0.9500 0.0016 0.9500 0.00169 0.4758 0.9983 0.0477 0.9999 0.0000 0.9999 0.000010 0.4999 1.0000 0.0001 1.0000 0.0000 1.0000 0.000011 0.5000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000Iteration � p1 p2 ~p1 ~p2 ~p3 ~p40 0.3000 0.6999 0.7000 0.2999 0.3002 0.2999 0.30021 0.3001 0.4998 0.5001 0.2996 0.3005 0.2996 0.30052 0.3001 0.4993 0.5003 0.2987 0.3014 0.2987 0.30143 0.3001 0.4978 0.5010 0.2960 0.3041 0.2960 0.30414 0.3001 0.4933 0.5029 0.2880 0.3123 0.2880 0.31235 0.3002 0.4798 0.5087 0.2646 0.3374 0.2646 0.33746 0.3010 0.4396 0.5260 0.2008 0.4158 0.2008 0.41587 0.3083 0.3257 0.5777 0.0739 0.6448 0.0739 0.64488 0.3594 0.1029 0.7228 0.0016 0.9500 0.0016 0.95009 0.4758 0.0017 0.9523 0.0000 0.9999 0.0000 0.999910 0.4999 0.0000 0.9999 0.0000 1.0000 0.0000 1.000011 0.5000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000Table 5: The coin example for Y = fhHHHi; hTTT i; hHHHi; hTTT ig. If we initialise p1 and p2to be a small amount away from the saddle point p1 = p2, the algorithm diverges from the saddlepoint and eventually reaches the global maximum.28


