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1 Introduction

The Expectation Maximization (EM) algorithm is a parameter estimation method which falls into
the general framework of maximume-likelihood estimation, and is applied in cases where part of the
data can be considered to be incomplete, or “hidden”. It is essentially an iterative optimisation
algorithm which, at least under certain conditions, will converge to parameter values at a local
maximum of the likelihood function. There are many statistical models which turn out to be special
cases of EM, for example: Hidden Markov Models (HMMSs) (Baum 71); the generalisation of HMMs
to Stochastic Context-Free Grammars (Baker 79); mixture models; and estimation in cases of missing
data.

(Dempster, Laird and Rubin) (from here on referred to as DLR)) defined the EM algorithm,
and proved certain properties, in particular that at each iteration the log-likelihood of the observed
data is guaranteed to be non-decreasing. That is, if L(®) is the likelihood of the observed data
given parameter values @, and @y, O are the parameter values at the ¢’th and ¢ + 1’th iterations
respectively, then L(®¢41) > L(©®;). They also defined Generalised EM (GEM) algorithms, which
include EM as a special case, and can be more computationally efficient, while still guaranteeing
that L(®t+1) Z L(@t)

(Wu 1983) addressed two issues:

1. Given that L converges to some value L*, then is L* a global maximum, local maximum,
saddle point or some other point? It is well known that L* can not, in general, be guaranteed
to be a global maximum. L(®;y1) > L(®;) is one condition for convergence to a stationary
point of L, (Wu 83) defines additional conditions for convergence of an EM or GEM algorithm
to a stationary point. At least for EM algorithms, these conditions are quite mild. He also
gave a condition for convergence to a local maximum as opposed to a saddle point, but this
condition is difficult to verify in practice (and does not hold in many practical applications).

2. Under what conditions do the parameter estimates ® also converge to some point ®@*? Con-
vergence of L to a point L* does not guarantee convergence of the parameter estimates to
some ©*, particularly if there is more than one point © satisfying L(®) = L*.

(JJ 93) emphasise that EM is an optimisation algorithm for L, and show that it is approximately
a steepest descent algorithm, an optimisation method which often converges slowly. They show that
with a relatively minor increase in complexity the EM algorithm can be modified to a conjugate-
gradient descent method, which is known to be an improved optimisation algorithm. They give



experimental results showing that their algorithm typically converges around 3-10 times faster than
standard EM, and can in some cases be 25-100 times faster.

The remainder of this paper gives some background about maximum-likelihood estimation in
section 2; considers the major results of DLR, (Wu 83) and (JJ 77) in sections 3, 4 and 5; and
concludes in section 6. For a summary of the major points of this paper the reader should refer at
this point to the bullet points in section 6.

2 Preliminaries

Most of the results in this section are taken from [BD 77].

2.1 Notation

We use bold-face throughout to denote matrices, normal typeface to denote scalars. Given a vector
X, we write its i’th component as X;. We use the D operator to denote differentiation. Where there
is ambiguity regarding which variable differentiation is with respect to, we use superscripts on the
D operator. For example, D°Q(®1, ;) is the first derivative of @ w.r.t. @1, DQ(©,,03) is
the first derivative w.r.t. ®,.

2.2 Maximum-likelihood Estimation
In general we have

e a sample X = {X1, X5, ...X,,} where each X; is a random variable (a single value, or vector of
values).

e A vector of parameters ® such that we can define the likelihood of the data P(X|®). We
can also define the log-likelihood L(X|®) = log P(X|®). Often the X;s are independently
identically distributed (i.i.d.) so that L(X|@®) =" log P(X;|®).

i=1...n

If Q is the parameter space, maximum-likelihood (ML) estimation involves setting the ML esti-
mate ®,,;, such that

Our = argrélgéL(X|®) (1)

2.2.1 An example

Suppose we toss a coin 6 times, and X; = 1 if the i’th toss is heads, 0 if it is tails. Say our sample
x ={1,0,0,0,1,0}. Assume the coin has a probability p of being heads, 1 — p of being tails, so that
® = p. Then

LX=x0) = Y log(P(X; = zlp)
= 2_logp + 4log(1 — p) (2)



We can maximize L by setting the derivative w.r.t. p equal to 0:

d L(X = x|®) 2
2 _ - =0 3
dp p 1l-p )

Solving this gives p = %, which is the “intuitive” estimate for p, the proportion of heads which have
been seen in the sample.

Another common example of maximum-likelihood estimation is when the components of X are
drawn i.i.d. from a normal distribution with unknown mean p and known variance o2. It’s simple

i

enough to prove that the ML estimate for y is 2.

, i.e., the sample mean.

2.3 Sufficient Statistics

A statistic T(X) is any real or vector-valued function of the data X. Note that if T(X;) = T(Xz2)
for two samples X; and Xo such that X; # Xg then T reduces the data, by mapping different
samples to the same value. T is sufficient if there are functions ¢(T(X),®) and h(X) s.t.

PX|®) = ¢(T(X),®)n(X) (4)

Typically, g(T(X),®) = P(T(X)|®) and h(X) = P(X|T(X). The crucial point is that when maxi-
mizing P(X|®) w.r.t. ® we can simply maximize g(T(X), ®), so the sufficient statistics summarise
the data — for ML estimation, once we know T we don’t need to know anything else about the data.

2.3.1 An example

For the coin-tossing example, if the sample size is n and the number of heads in the sample is Ny,
then

P(X|®) = pM(1-p) ()

So T = (N, n) is sufficient.

2.4 Exponential Families

An important class of distributions is the exponential family, where the likelihood can be written
P(X|®) = {exp[y_ Ci(®)T;(X) +d(®) + S(X)]}a(X) (6)

I4 is the indicator function over the set A, and A cannot depend on ®. Note that T(X) =
{T1(X), T>(X)...T,,(X)} is sufficient.

If we define the parameters ® = {01, 02,...0,,} such that C;(®) = ©; then these are called
the natural parameters. This can be a useful simplification, for example if when maximizing L we
differentiate w.r.t. ®, where for the natural parameters the derivative is then a simple function
involving T.



2.4.1 An example: the normal distribution

P(xIO) = ——ew- Tt

202

p p
exp[— + ;X ~5p7 log oV 2] (7

In this case C(®) = {553, &}, T(X) = {X?, X}, d(O) = % —log ov/2m The natural parameters
are {—5iz, 25}, being functions of the conventional parameters {y, o}

2.4.2 Other important properties
By noting that (by the definition of probability)

/P(X|®) X =1 (8)

it is easy to show

dO) = —log / {exp[Y CHO)TH(X) + S(X)]Ha(X) dX )

Using! 7 (- log f(©)) = —%, and assuming that we’re using natural parameters (hence 7 > C;(©)T;(X)

T(X))

vo) - YRS COT) + SEOMAK) iX
J{exp[2 Ci(@)Ti(X) + S(X)Ha(X) dX

_ v [{exp[} Ci(O)Ti(X) + SX)[}a(X) dX

exp[—d

(©)]
__JTXNexp[3 CGi(O)Ti(X) + S(X)]Ha(X) dX
exp[—d(©)]
= / T(X){exp[»_ Ci(®)Ti(X) + S(X) + d(®)]}4(X) dX

= /T P(X|®)
X)|©] (10)

Now note that the log-likelihood

LX|®) = ) Ci(® +d(®) + S(X) (11)

1<y refers to differentiation w.r.t. ®




So to obtain the ML estimates by differentiating w.r.t. ® (again, assuming natural parameters)

L'(X|®) = T(X)+d(©)
= T(X) - E[T(X)|O] (12)

So setting T(X) = E[T(X)|0] will give L' (X|®) = 0, and maximize the log-likelihood. For example,
for a binomial distribution, the sufficient statistic T(X) = Y X; and E[Y_ Xj|p] = np where n is
the sample size and p is the binomial parameter. So solving Y X; = np gives the ML estimate of p.
If we assume non-natural parameters, then (12) is modified to give
dC(®)

L'xe) = = 2T(X) - ET(X)|0] (13)

Solving T(X) = E[T(X)|®] is also a solution to (13), but this solution may not always exist — it may
be necessary to also solve (13) as it stands (see section 3.5.1 for an example where T(X) = E[T(X)|0]

has no solution, but d?iga) [T(X) — E[T(X)|®]] = 0 does have a solution.)

3 The EM algorithm

The EM algorithm assumes the following problem definition: we have two sample spaces X and ),
such that there is a many-one mapping Y = f(X) from an observation X in X’ to an observation Y
in ). We define

XY) = {X:fX)=Y} (14)

X is the complete data, and Y is the observed data. If the distribution f(X|®) is well defined then
the probability of Y given @ is

o(Y|®) = /X L, 1o ax (15)

EM attempts to solve the following problem: given a sample from Y is observed, but the corre-
sponding X are unobserved, or hidden, find the maximum-likelihood estimate @), which maxi-
mizes L(®) = log ¢g(Y|®). In general, log f(X|®) will have an easily-defined, analytically solvable
maximum, but maximization of L(®) has no analytic solution. EM is an iterative optimisation
algorithm which defines a sequence of parameter settings through a mapping ®; — ;41 such that
L(®11) > L(©;) with equality holding only at stationary points of L(®). Thus EM is a hill-
climbing algorithm which, at least under certain conditions, will converge to a stationary point of
L(®).
The mapping @; — O, is defined in two steps:

1. The Estimation step. Define p(X) = p(X|Y,®;). (Note that p(X) = 0 outside X(Y).)
Calculate

Q(®',0;) = Ellogf(X|®)|pX)] =/13(X) log f(X|©') dX (16)



2. The Maximization step. Set @;,; = argmaxe’ Q(O', 0,).

The intuition is as follows: if we had the complete data, we would simply estimate ®' to maximize
log f(X|®'). But with some of the complete data missing we instead maximize the expectation of
log f(X|®') given the observed data and the current value of ©.

3.1 An example

Say we observe a series of coin-tosses which we assume have been generated in the following
way: a person has two coins in her pocket. Coin 1 has probability of heads = p;, coin 2 has
probability p,. At each point she chooses coin 1 with probability A, coin 2 with probability
1 — A, and tosses it 3 times. Thus the observed data is a sequence of triples of coin tosses, e.g.
Y = {(HHH),(TTT),(HHH),(TTT)}. The complete data X, if we could observe it, would ad-
ditionally show the coin chosen at each step, e.g. X = {(HHH,1),(T'TT,2),(HHH,1),(TTT,2)}.
The parameters, all of which are to be estimated, are @ = {\, p;,p2}.

Assume that X is unobserved. Then the EM steps are as follows.

1. The estimation step: define p; = P(X; = (V;,1) | Y;, ®), i.e. the probability of the i’th coin
being coin 1, given the observed data and the current parameter settings. If P.(Y;|p) is the
probability of seeing Y; given a coin with prob of heads = p, then we have

filXi = (Y5,1) | ©) = AP.(Yilp1) (17)
9:(Yi | ©) = AP:(Yilp1) + (1 — M) Pe(Yi|p2) (18)
__ filXi=(Y,1) | ©)
P = A (19)
/\Pc(yri|p1) (20)

AP (Yilpy) + (1 = M) Pe(Yilp2)

p; is the posterior probability of coin 1 having generated the ¢’th observation. If we define H;
as the number of heads in Y; then P.(Y;|p) = pfi(1 — p)*~Hi. Say @' = {\,p},ph}. As the
samples are i.i.d., we can write

E [log f(X|®") | 5(X)]

> Ellog fi(X[©') | 5]

Y bilog(fi(Xi = (¥, 1) | ©)) + (1= ) log(fi(Xi = (Y, 2) | ©))
> pilog N P.(Yilph) + (1 — fii) log(1 — N') P.(Y;|ph)

= > Bilog NP (1= ph)* M + (1 = fi) log(1 — N)py™ (1 — ph)* ™

= > pilog XN + (1= i) log(1 = X) + pilog i (1 = p})* ™ + (1 — ) log pi™i (1 — ph)* 1
(21)



2. The Maximization step: Maximizing this function by setting the differentials w.r.t. X, p}
and p/, respectively to 0 gives the following update formulae:

)\I _ Zﬁl

= S (22)
DS Ié Di
DL )
P2 = > (1—pi) @9

These formulae have a nicely intuitive interpretation. A is the average posterior probability of coin
1 having generated the ¢’th sample. p; is a weighted average over the observations of the usual ML
estimate, Ig , where the weight corresponds to p;, the posterior probability of coin 1 for Y;. Similarly,
po is a weighted average over the observations, where the weight corresponds to 1 — p;, the posterior
probability of coin 2 generating Y;. See tables 1, 2 and 3 for examples of the EM algorithm for this

problem.

3.2 Proof that L(®) is non-decreasing at each iteration

A crucial property of the EM algorithm is that the log-likelihood L(®) = logg(Y|®) is non-
decreasing at each iteration. Formally, if we define the EM mapping as ®; — ®;;; where @, =
argmaxe Q(0',0;) then L(®.y1) > L(O;). The proof rests on two results:

1. Define k£(X]|Y, ®) to be the posterior likelihood of the complete data given the data Y and the

parameters @, so that £(X|Y,®) = 58?;83 . If we define H(®',0) = E[log k(X|Y,0') | p(X)],

(as before, p(X) = p(X|Y, ®)), then

L(®)=Q(©®',0)-H©'K60) (25)

ve@' H(®',0)< H(©,0) (26)
with equality iff log k(X|Y,®’) = log k(X|Y, ®) almost everywhere.
Given (25),
L(O¢11) = L(Oy) = {Q(O11,0¢) — Q(O,0¢)} — {H(O11,0) — H(O,0)} (27)

But {Q(®r11,0:)—Q(O, )} > 0 (by the definition of the M step), and from (26) {H (O 4+1,O;) —
H(©:,0,)} <0, so clearly L(®;11) — L(©®;) > 0.



|| Iteration || A | p1 | P2 || D | D2 | D3 | P4 ”

0 0.3000 | 0.3000 | 0.6000 || 0.0508 | 0.6967 | 0.0508 | 0.6967
1 0.3738 | 0.0680 | 0.7578 || 0.0004 | 0.9714 | 0.0004 | 0.9714
2 0.4859 | 0.0004 | 0.9722 || 0.0000 | 1.0000 | 0.0000 | 1.0000
3 0.5000 | 0.0000 | 1.0000 || 0.0000 | 1.0000 | 0.0000 | 1.0000

Table 1: The coin example for Y = {(HHH),(TTT),(HHH),(TTT)}. The solution that EM
reaches is intuitively correct: the coin-tosser has two coins, one which always shows up heads, the
other which always shows tails, and is picking between them with equal probability (A = 0.5). The
posterior probabilities p; show that we are certain that coin 1 (tail-biased) generated Y> and Yy,
whereas coin 2 generated Y; and Y3.

[lteration | A [ »m [ »o || & [ p2 [ s [ 5 | 5 |
0 0-3000 | 0.3000 | 0.6000 ]| 0.0508 | 0.6967 | 0.0508 | 0.6967 | 0.0508
I 0.3092 | 0.0987 | 0.8244 || 0.0008 | 0.9837 | 0.0008 | 0.9837 | 0.0008
2 0.3940 | 0.0012 | 0.9893 || 0.0000 | 1.0000 | 0.0000 | 1.0000 | 0.0000
3 0.4000 | 0.0000 | 1.0000 || 0.0000 | 1.0000 | 0.0000 | 1.0000 | 0.0000

Table 2: The coin example for {(HHH),(TTT),(HHH),(TTT),(HHH)}. X is now 0.4, indicating
that the coin-tosser has probability 0.4 of selecting the tail-biased coin.

[Tteration ]| X | »m [ p | & [ £ | 5 | % |
0 0.3000 | 0.3000 | 0.6000 | 0.1579 | 0.6967 | 0.0508 | 0.6967
1 0.4005 | 0.0974 | 0.6300 || 0.0375 | 0.9065 | 0.0025 | 0.9065
2 0.4632 | 0.0148 | 0.7635 || 0.0014 | 0.9842 | 0.0000 | 0.9842
3 0.4924 | 0.0005 | 0.8205 || 0.0000 | 0.9941 | 0.0000 | 0.9941
4 0.4970 | 0.0000 | 0.8284 | 0.0000 | 0.9949 | 0.0000 | 0.9949

Table 3: The coin example for Y = {(HHT),(I'TT),(HHH),(TTT)}. EM selects a tails-only coin,
and a coin which is heavily heads-biased (ps = 0.8284). It’s certain that Y7 and Y3 were generated
by coin 2, as they contain heads. Y, and Y, could have been generated by either coin, but coin 1 is
far more likely.
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3.2.1 Proof of equation 25

By the rules of conditional probability,

N _ f(X[©)
EX|Y,®") = JY[®)
log (XY, ®) = log f(X|©') — logg(Y|©) (28)
We can now take expectations w.r.t. p(X) = p(X|Y, ©):
Elogk(X|Y,0) | p(X)] = E[logf(X|®")]p(X)] - Eflogg(Y[O') | H(X)]
= Ellog f(X[0®") | p(X)] — logg(Y|©') (29)

(Note that E[logg(Y|®') | p(X)] = logg(Y|®’) as log g(Y|®) does not depend on X.) So by the
definitions of H, () and L,

H(®',0)=Q(0',0) - L(O) (30)

3.2.2 Proof of equation 26

One thing to note is that H(®,®) — H(®', ®) is the Kullback-Liebler distance between k(X|Y,®)
and k(X|Y,®'), which is known to be > 0 with equality only if the two distributions are equal.

A formal proof is through the following theorem stated in (Rao 1e.6.6): Let f(X) and g(X) be
non-negative and integrable functions, and S be the region in which f(X) > 0. The theorem states
that if [3(f(X) = g(X))d X > 0, then [ f(X)log Z53d X > 0.

If we put f(X) = k(X|Y,0) and ¢g(X) = k(X|Y @’) then clearly [(f(X) —g(X))d X >0, as
Js f(X)d X =1 and by the laws of probability [ g(X)d X < 1. Hence

fX) o k(X]Y,©)
/Sf(X) log g(X)dX = /Sk(XIY:@)IOgW 20

But

H(©,0) - H(0',0) E [logk(X[Y, 0) | (X)] - E [log k(X|Y, ©') | (X)]

= /k(X|Y,®) logk(X|Y,®)—/k(X|Y,(-)) log k(X|Y,©")
s s
= /kX|Y @)log%
0 (31)

v

3.3 Proof that L(®) is increasing if © is not a stationary point of L

The result given in DLR, that L(®.y;) > L(©;), is not all that useful, as the likelihood could
remain at the same value at any iteration: for example the trivial mapping ®;;1 = ®; would satisfy

11



it with equality. (Wu 1983) proves the more useful result that if £ is the set of stationary points
of L in 2, where  is the space of ©®, then L(®:+1) > L(®,) for any ©; ¢ L. So this says that L
will increase unless the algorithm has already reached a stationary point of L. This is one necessary
condition for convergence to a stationary point of L.

The proof is as follows: from (25) we can write

L(®,) = Q(©,0;) — H(O,O;) (32)
Differentiating gives
DL(®;) =D'" Q(©,0,) - D' H(©,,0,) (33)
From (26), ® = ©; maximizes H(O®, ©,), so D!* H(®;,0;) = 0, therefore
DL(©;) = D'’ Q(©,,8,) (34)

If ©; ¢ £ then DL(©;) # 0, so D!° Q(©;,0;) # 0. Therefore we cannot be at a maximum of @,
hence given that ®;;; maximizes Q(®, ®;) we have

VO ¢ L Q(Or11,0¢) > Q(Oy, ©y) (35)
From (25), (26) and (35) it is clear that
VO, ¢ L L(Oi11) > L(Oy) (36)

3.4 Generalised EM (GEM) algorithms

DLR defined a GEM algorithm to be any iterative scheme @; — @,y such that Q(O¢y1,0;) >
Q(®;,0;). The point here is that it is not necessary to maximize @) at each step, instead it is
sufficient for @ to simply increase at each step to ensure that L(®;y;) > L(®;). In some situations
it is less computationally demanding to increase @) at each step rather than to maximize it. Clearly
EM algorithms are a special case of GEM algorithms.

As it stands, this definition is flawed. An additional criterion is required for L to converge to a
stationary point, namely

VO: ¢ L Q(O141,0;) > Q(O, 0,) (37)

i.e. @ must be strictly increasing if we have not reached a stationary point of L. Note that EM
algorithms automatically satisfy (37) by the proof in section 3.3. (Wu 83) identified this flaw in the
definition of GEM algorithms, and states additional conditions (see Theorem 1 of (Wu 83), described
in section 4.1) which guarantee convergence. Without the additional conditions non-convergent
algorithms such as the trivial ®;11 = ®; satisfy the GEM definition.

3.5 Special Cases of the EM Algorithm

The generality of the EM formulation is extremely useful, but also means that @) has to be defined for
each problem, and furthermore that a method for maximizing @) must be found for each case. This
section describes a few special cases of EM problems where () has been defined and the maximization
step has a simple analytic solution.

12



3.5.1 Exponential Families

Here the complete data is generated from a distribution which is a member of the exponential family,
that is f(X|®) = {exp[}_ Ci(®)T;(X) + d(®) + S(X)]}[4(X). DLR show that in this case the
following is an EM algorithm:

1. Expectation step. As before, define p(X) = p(X|Y, ©;). Calculate
7 = E[T(X) | 5(X)] (38)
2. Maximization step. Find ®' such that
E[T(X)|®'] =T" (39)
Note that (39) is very similar to the usual ML solution for exponential families, setting T(X) =
E[T(X)|®'] (see section 2.4.2), except we set E[T(X)|®’] to be the expected value of the sufficient
statistics given the observed data and the current @, instead of calculating the sufficient statistics

from the complete data which is unobserved.
The proof that this procedure maximizes @) is as follows:

Q@ 0) = / B(X) log /(X|©') dX

/ p(X) [Z Ci(®")Ti(X) + d(©') + S(X)] dx

Q@0 = [0S

— 5| TGP0 15X)] + B (@) | 5X)

T(X) +d(©')] dX

d®

dC(e’ -
= 199 prx) | 0] + (@)
dC(®’ -
= L0 (B | )] - BITX) | ) (10)
So (38), (39) give D°Q(O’,©®) = 0, and therefore maximize @, the required result.
A solution to (39) may not actually exist, and a more general formulation of the maximization

step is to set

dC(®)
i)

An example. DLR present an initial motivating example for EM. Say the complete data
X = (1,2, 23,34, 5) is drawn from a multinomial distribution (3, Z, 1% =% Z) The observed

data Y = (y1,¥2,¥s3,y4) = (125,18,20,34), and y1 = x1 + 22, Y2 = T3, Y3 = T4, Y4 = T5. Lhus x;
and x5 are hidden, while z; 4+ x5 is observed. The log-likelihood of the complete data can be written

[T? - E[T(X)|®'] =0 (41)

1—m 1—m
+ z4 log

1
log f(X | m) =z log 3 + zy log% + z3log + z5 log% + 5(X) (42)
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where S(X) is a multinomial coefficient. This is then an exponential distribution, with sufficient
statistics T(X) = (21, #2, 23,74, 25) and C(©) = (log £,1log T, log 127, log 17, Z). While x3, 4, x5
are observed, the expectation step involves estimating z¥ and 2% given the current parameter settings

and the observed data Y. This gives

1
) =Bz | Y,n] = 1252~ (43)
3t q
:U?Z’:E[a:2|Y,7r]=125lf_£ (44)
2 4

Then E [T(X) | Y, 7] = (2}, 28, 3, 24, 5). We can also calculate E [T(X) | 7] = n(4, 5,155, 155, =
where n = y; + y2 + y3 + y4. DLR’s maximization step (39) gives

E[T(X)|n']=E[T(X)]|Y,n]
n(_;_7—;— _) = ($?7$§,$3,$4,$5) (45)

where 7’ is the new value for 7. However this does not have a solution for 7', so it fails as a
maximization step (for example, it requires x5 = x4 = n*5", but x5 = 18, 4, = 20). If we instead
use the more general formula in (41), noting that d(;:iga) = (0,1, =L =L 1) then the maximization

Yt l—m?l—m’7
step becomes

1 -1 -1 1 17 1-7 1—-7" 7
O T T g o) b )l =0
xg+x5_x3+x4 — 0
' 1-n
p
o = Ty + 5 (46)

Th + 3+ x4 + 25

This is precisely the solution given in equation (1.5) of DLR.

3.5.2 Algebraic Models

(Lafferty) describes an important class of EM problem — EM applied to algebraic models. Say
© = {p1,p2,...pn} is the combination of m multinomial distributions €, Qs, .., such that the Qs
are disjoint subsets (forming a partition of {1,2,3..n}) of the integers {1,2,...,n} and {p; : i € Q;}
are the parameters of the j’th multinomial, so that Zier p; = 1. The probability of the complete

data can be written
C(i, C(i, C(i,
fxj@) = I »7"% I1 w0 I e (47)
o i€ I€EQm

where C(i,X) is the count of the event in X which corresponds to p; — C(i, X) are the sufficient
statistics for X. In this case, if @' = {p1,pa,...p,,} then the @) function is:

QO,0) = > HX) > Ci,X)logp; + Y p(X) Y C(EX)logpi + ... »_p(X) Y C(i,X)logp;

1€Q 1EQ2 1€,

14

(48)



We can maximize ) by maximizing each of these double sums separately. This gives m constrained
optimisation problems, for example maximize

Q1(0,0) = > 5(X) ) Ci.X)logpi (49)
ie
subject to the constraint
Z pi=1 (50)
1€Q
Using Lagrange multipliers, the unconstrained problem is to maximize
Q1(@,0) = Y H(X) D CGX)logp =AY pi (51)
i€Q i€Q

Taking partial derivatives w.r.t. p; and setting them to 0 gives

dQ.(0',0) HX)C(j, X)
— = —7 = —A=0
dp; 2 pj
p(X)C(j,X
> p 2. B( )/\ (4, X) (52)
If we define C(j,X) = 3. p(X)C(j, X) and find X s.t. Y ico, bi = 1, then
o= X 53)

2ieq, €0, X)
C'(j, X) can be interpreted as the expected count corresponding to parameter p;, and p; is then the
normalised expected count.

Examples of algebraic models Hidden markov models are an important class of algebraic
model. An EM algorithm for HMMs was first suggested by [Baum 71]. An HMM has n states
{s1,52...s,}. There are n x n transition probabilities, P(s; — s;) such that > .,  P(s; = s;) = 1.
Initial and final states are defined, without loss of generality we take the initial state to be sp, the
final state to be s,. Given an output alphabet ¥ s.t. |X| = m, there are also n X m emission
probabilities p(i 1 j), where this is the probability of state s; emitting symbol j. The observed data
is a sequence of symbols from ¥, and the complete data is this sequence together with the underlying
sequence of states which generated this data.

Say we observe an output sequence {01, 09, ....0; }, and the state sequence is {q1, g2, ...q;} (exclud-
ing the initial and final states). Then the probability of the complete data is

f{or,02, o} {ar, @2, -} | ©) =
[Ir(s1 = ap(a = @)p(az = g)--pl@ = s0) x [J(ar T o1) (a2 T 02)-e(@r T 01) (54)
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If C(s; — s;) is the number of times we see p(s; — s;) in the first product, and C(s; 1 j) is the
number of times we see p(s; 1T 7) in the second product, then we can re-write this as

f{o1,02, ..o}, {q1,q2,.-.q} | ®) =
II II pGsi= s I T plsi t5)C01) (55)

i=l.nj=1l..n i=1l..nj=1l..m

Thus this defines an algebraic model with 2n multinomial distributions. We can define the EM
algorithm for HMMs using the general method shown above. The result is a set of expected counts,
C(si — sj) and C(s; 1 7), with
C(s; — s ) Cl(s; 17
p(si = s5) = (’~ i) p(si 17) = (z~ )
Zk:l..n C(SZ - S’C) Zk:l..m C(Sz 0 k})

Note that 3", _, . C(s; = si) = > 1_; ., C(si T k) is the expected number of times the model was in
state s; given the observed data and the current parameter values. A naive algorithm for this problem
would be the following: for every possible state sequence, calculate f({o1, 02, ....01 }, {aq1, g2, .-.q1} | ®),
and the sufficient statistics for X = {{o1,02,....01},{q1, 42, ...qt}}. From f calculate the marginal
k({q1,q2,.--@} | {01,02,....0.},0). From the marginal probabilities and sufficient statistics for each
state sequence, calculate the expected counts and from these the parameter values. This algorithm
is unworkable though, given that the number of state sequences n! is exponential. Fortunately
the forward-backward algorithm given in [Baum 71] gives a dynamic programming algorithm for
calculation of the expected counts, which runs in O(n?l) time.

(56)

3.6 Summary of the 4 Theorems in DLR

In the following section we take M (@) to define a GEM algorithm, that is Q(M(©),0) > Q(©,0)
for all ®. DLR states 4 central theorems with respect to GEM algorithms.

3.6.1 Theorem 1

For every GEM algorithm, L(M(®)) > L(®), with equality if and only if both Q(M(®),®) =
Q(0,0) and k(X | Y,M(®)) = k(X | Y, ®) almost everywhere. The proof is in section 3.2.

Corollary 1. Suppose for some @*, L(®*) > L(O®) for all ®, i.e. O* is a (possibly non-
unique) global maximum of L. Then L(M(®*)) = L(®*), Q(M(©*),0*) = Q(O*,0*) and
EX | Y,M(®*) = k(X | Y,0*) almost everywhere. Hence if EM reaches a global maximum,
the likelihood remains fixed at this point.

Corollary 2. Suppose for some ©* L(©®*) > L(®) for all @ # O* ie. O is a unique global
maximum of L. Then for every GEM algorithm M(®*) = ®*. So if EM has reached a unique global
maximum, the parameter values remain unchanged at each iteration.

3.6.2 Theorems 2 and 3

Theorems 2 and 3 attempted to show that under certain conditions ® converges to some point
®*. Note that L(®) will usually converge to some value L* ((Wu 83) defines the exact conditions
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required for this to be the case), but this does not imply that @ also converges — ® could, for
example, be oscillating between points nearby two local maxima with the same maximal value L*.
Unfortunately, as noted by (Wu 1983), a key step of the DLR proof is wrong, namely the application
of the triangle inequality to go from step (3.13) to (3.14). Because of this both theorems 2 and 3
are invalid.

3.6.3 Theorem 4

It is useful to be able to calculate the rate of convergence of an EM algorithm. For the one parameter
case where © converges to a point ©* we can define the rate of convergence Re, = %. This
can be interpreted as the reduction in the distance to ©* when going from ©,, to 0,41, for example

it @ =0.5, 9, =1.0, Op41 = 0.75 then Rg, = 0.5, i.e. the distance to ©* is halved. It’s possible

to prove that lime, e- Re, = M'(0*) where M'(0) = dA(;I(S)@)‘ So if we can calculate M'(©*), then
we have an estimate of the rate of convergence close to ®*.

Proof. Say ©, = ©* + 4. Then O, = M(0* 4+ 0). Noting also that M(0*) = ©*, as O* is a
maximum of L,

Opp1 — OF
R — p+
Op @p _ (..)*
M(©* +6) — O*
O* 4+ 6 — O*
_ M(©6*+6) - M(0Y)
B 0
(57)
So,
. . M(©*+6) - M(©*) dM(0O)
o . o, = i 5 R >
This can be generalised to the multiparameter case: R = dl\g((a@) = DM(®) is a vector of rates

of convergence, where the i’th component of R is the rate of convergence of the i’th parameter in
®.
Theorem 4 of DLR states that

DM(©*) = D*°H(®",0") [D*°Q(e*,0)] (59)
under the following conditions:
1. ®OP converges to some @*.

2. D%Q(®p11,0,) = 0. This means that () is maximized at each iteration, EM algorithms
satisfy this condition, as do GEM algorithms which find a stationary point of ) at each
iteration.

3. D2°Q)(Op+1,Op) is negative definite with eigenvalues bounded away from 0.
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An example. If we return to the example in section 3.5.1, we can calculate D2°Q (7', 7) and
D2%H (7', ) as follows:

From (40)
DOQUE, ) = (02 g s o) (e T AT AT T ok )}
- dim g ®
(This is the quantity we set to 0 in the maximization step (46)). Differentiating again gives
DXQ(x x) = _Thtas T3ty (61)

71.12 (1 _ 71-1)2

This is the value given on page 10 of DLR. To calculate D2° H (7', ) we note that L(7') = Q(#',7)—
H(rn',m), so that D2°H (7', 7) = D2°Q(7’,7) — D2L(n’) We have

+ 7 1—7 17 /

) + x3 log + x4 log 47T +x5log%+S(X)

2
L(n") = yilog(

+Ty Ts
DlL ! — Y1 _ T3 5
(') 2+ 7! 1-7 x!

+ 24 T

D2L ! — _ Y1 _ €3 _

(ﬂ- ) (2 + 7T’)2 (1 _ 7T’)2 7T’2

So

D?°H (', ) D?°Q(r',7) — D2L(x")
— _II2)+'T5_ T3 + x4 _{_ Y1 Tr3 + Ta Ts

7’2 (1—7')2 Q2+7)2 (1—-n)2 )

Again, this is the value given on page 10 of DLR.

4 (Wu 83)’s Commentary on the EM algorithm

(Wu 83) addresses two points concerning the EM algorithm:

1. If L converges to some L*, what is the nature of L*? (A global maximum, local maximum,
stationary value or other point?) He shows that in general there can only be a guarantee that L*
is a stationary value (i.e. a local/global maximum or a saddle point), and specifies conditions
under which L* falls into these categories (without these conditions, L* could potentially be
any value).
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2. Under what conditions does ® converge to some ®@*7 Note that even if L converges, ® may
not converge, for example it could oscillate between points on two local maxima which have
the same maximum.

(Wu 83) makes the following assumptions throughout, so they can be taken as preconditions of
every theorem stated in this section:

e (2 is a subset in the r-dimensional Euclidean space R".

(€2 is the parameter space so © € Q). (64)
e o, ={®@ c Q:L(O) > L(Og)} is compact for any L(@g) > —oo. (65)
e L is continuous in © and differentiable in the interior of (2. (66)

As a consequence of these conditions it follows that

e {L(®p)}p>0 is bounded above for any @9 € Q. (67)

4.1 Is L* a global maximum, local maximum or stationary value?
We define the following subsets of €2:
e M is the set of local maxima in the interior of €2.

e [ is the set of stationary points in the interior of €2.

From this it follows that £\ M is the set of saddle points in € (the set of stationary points which
are not local maxima).

4.1.1 Theorem 1

Let {®,} be a GEM sequence generated by ®py1 € M(®p). Then L converges monotonically to
L* = L(®*) for some ®* € L under the following conditions:

i) M is a closed point-to-set map over the complement of £ (we define closed point-to-set maps in
section 4.1.6 below).

il) L(®pt1) > L(Op) for all Oy ¢ L

This theorem also holds if we replace every mention of £ with M — this gives a similar theorem
but for the conditions for convergence to a local maximum rather than just any stationary point.

4.1.2 Theorem 2

Section 3.3 showed that for EM algorithms (as opposed to any GEM algorithm) condition (ii) of
theorem 1 holds for the £ (stationary value) case. M can be shown to satisfy condition (i) if Q(®’, ©)
is continuous in both ®' and ©. This leads to theorem 2:

If Q(®',0) is continuous in both ®' and ©, then all the limit points of an EM
algorithm are stationary points of L and L converges monotonically to L* = L(©®*) for
some O* € L.
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4.1.3 Theorem 3

Theorem 2 guarantees convergence to a stationary value, but this stationary value could be a saddle
point (a member of £\ M). The problem is that EM satisfies condition (ii) of Theorem 1 for
stationary values ®p ¢ L, but there may be saddle points @5 € L\ M such that L(M (Os)) = L(Os).
Theorem 3 states that convergence to a local mazimum is guaranteed if every saddle point of L is
not a global maximum of Q(®',®) w.r.t ®'. From (34) DQ = 0 at any saddle point of L, so this
must mean that any saddle point of L is a saddle point or local maximum of @), but not the global
maximum of Q). If this condition is satisfied then (given that EM maximizes ) at each step) @ will
increase even at the saddle point, and L will also increase.

4.1.4 Summary of Theorems 1, 2 and 3

To summarise these theorems, when designing a GEM or EM algorithm:

e For GEM algorithms check that conditions (i) and (ii) of theorem 1 hold, and the algorithm
will then converge to some point in £ (or M for the version of theorem 1 regarding M).

e For EM algorithms check that Q(@®’, ®) is continuous in both ®' and ©, then by theorem
2 the algorithm will converge to some point in £. In addition, if it can be shown that every
saddle point of L is not a global maximum of @), then L will converge to some point in M.

4.1.5 Example of Convergence to a Saddle Point

If we return to the example in section 3.1, but initialise p; and p» to the same value, we get the
behaviour in table 4.

Theorem 3 is violated for this example, and in general it’s hard to guarantee this theorem’s
requirement. (Wu 83) suggests that it’s important when running EM to try several starting points,
and to randomly select initial parameter values, in particular to avoid symmetries such as p; = po
in the last example. Note that if we initialise p; and p, even slightly differently from each other we
get convergence to the global maximum, see table 5.

4.1.6 Proof of Theorem 1

The proof rests on the Global Convergence Theorem, which is stated and proved in (Zangwill 69):

Say {xr}72, is generated by xp1 € M (x), where M is a point-to-set map on X. (A point-to-set
map on X is a function from points in X to subsets of X). Let a solution set I' be given. Suppose
that:

1. All points x are contained in a compact set S C X.

2. M is closed over the complement of I'. “Closedness” is a generalisation to point-to-set maps
from continuity of a point-to-point map; for a point-to-point map continuity implies closedness.

3. There is a continuous function « on X such that
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(a) if z ¢ T, a(y) > a(x) for all y € M (z).
(b) f z €T, a(y) > a(z) for all y € M(x).

Then all limit points of {z} are in the solution set I' and a(xy) converges monotonically to a(z)
for some x €T

If we take M as a GEM algorithm, &« = L and I' = £ (or M for Theorem 1 for M), GEM
algorithms always satisfy the following conditions:

e Condition (1). If ®¢ is such that L(®g) > —oo then, given that L is non-decreasing for a
GEM algorithm, all points zj, are contained in Qg,, which by assumption (65) is compact.

e Condition (3b). This comes from L being non-decreasing at each iteration of a GEM algo-
rithm.

The remaining conditions — (2) and (3a) — are conditions (i) and (ii) of Theorem 1, hence if
Theorem 1 holds then the global convergence theorem holds. Theorems 2 and 3 follow from Theorem
1.

4.1.7 Corollary 1

(Wu 83) states one additional result concerning the convergence of L to L*, corollary 1 to Theorem
6:

Suppose L(®) is continuous in Q with ®* being the only stationary point and that
D'°Q(©®’,0) is continuous in both ®' and ©. Then for any EM sequence {©,}, O,
converges to the unique maximizer ®* of L(©).

4.2 Does ® Converge to a point ©*7

Say {®,} is an instance of a GEM algorithm which satisfies theorem 1. Define L(a) = {©® : L(®) =
a}. Then by theorem 1 L converges to L* and all the limit points of {®,} are in £(L*). Theorems
4 and 5 of (Wu 83) then give conditions where ® converges to a point ®*.

4.2.1 Theorem 4

If £L(L*) = {©®*}, that is there is only one stationary point of L at which L is L*, then ® — ©*.

4.2.2 Theorem 5

If ||®pt1 — Opl| — 0 as p — oo then all the limit points of ®p are in a connected and compact
subset of £(L*). In particular, if £(L*) is discrete, then ® — @* where ®* is some member of
L(L*).

21



4.3 The Non-convergent GEM Algorithm given in (Boyles 83)

(Boyles 83) gives an algorithm which satisfies the GEM definition in DLR, and is interesting in two
respects:

1. It does not converge to a stationary point of the likelihood function.
2. © does not converge to some point O*.

It is useful to examine this example in the context of (Wu 83)’s theorems. The basic idea of (Boyles
83) is to define a GEM algorithm for a two parameter problem, maximization of L(6;,62). If y1,y2
are the ML-estimates for 6;,6-, then in their example it can be shown that all points 6;, 6> which
lie on a circle of radius r centered on y;,y> give the same value for L(6;,65). Moreover, the lower
the value of the radius r the more L increases. The GEM algorithm given then defines the mapping
or, 08 — 0f+1,0§+1 such that the parameter values spiral in, with the radius decreasing at each
point, such that the limit of the parameter values is to rotate on the circle at r = 1. Clearly the
algorithm fails to reach the maximal point at » = 0, and ® does not converge, instead in the limit
the parameters continually traverse the circle. So which convergence criteria in (Wu83) does the
algorithm fail?

First, it fails Theorem 1 condition (ii). For any r < 1 the radius remains constant at each
iteration, hence the likelihood also remains constant. But » = 0 is the only stationary point of L in
the problem, so Theorem 1 condition (ii) is violated.

Second, it fails the requirements of both theorems 4 and 5. L converges to a value L* which has
many values of 1,6 such that L(6,,602) = L*, in fact any 6;, 6> which lie on the circle of radius 1.
And it is clear that ||@p+1 — Opl| — 0 is not satisfied.

5 (Jamshidian and Jennrich 93)

(JJ 93) further emphasise that the EM algorithm is an optimisation algorithm, and apply a standard
optimisation algorithm, generalised conjugate gradient descent.

5.1 Optimisation of Quadratic Functions
(Zangwill 69 Chapter 6) describes Conjugate-Gradient methods for optimisation. Taking a Taylor’s
expansion (page 326 of Zangwill 69) about a local maximum of L at ®*, gives

L(X|®* +0) ~ L(X|®*) + D'L(X|®*)§O + %6®TD2L(X|®*)6® (68)

Where D!... and D?2... are the first and second derivatives of L with respect to ®. Taylor’s theorem
shows that this approximation becomes increasingly accurate as d® — 0. Thus we have a quadratic
(second-order) approximation to L close to a maximal point.

Gradient-based optimisation algorithms draw heavily on results for optimisation of a quadratic
function such as

1
f(Z)=c+bTZ + 5ZTAZ (69)
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The most obvious optimisation algorithm is steepest descent: at each point calculate the gradient
D, and move in this direction to the point which maximizes f(Z + oD f) where « is the distance
moved in the gradient’s direction.

A crucial result is that steepest descent algorithms can be very poor as optimisation algorithms
for quadratic functions, whereas conjugate gradient methods maximize a quadratic in at most p steps
for a p-variate quadratic. If we assume that the function being optimised is well approximated by
some quadratic, then we can assume that these results carry over to the function: steepest gradient
will be considerably poorer than a conjugate gradient method based on the quadratic approximation
of the function.

5.1.1 Conjugate Gradient Methods

Given an n X n symmetric matrix A, the directions d;,d-...d,, are said to be A-conjugate if they are
linearly independent, and d¥*Ad; = 0 for i # j.

It can then be shown that for a quadratic function f(Z) = ¢+ bTZ+1ZT AZ, given n conjugate
directions and a starting point Zg, then the following algorithm will maximize a quadratic in n steps
(i.e. Z,, maximizes f):

e For £ = 1...n, find the a; which maximizes f(Zx_1 + ardk). Set Zyx = Zx_1 + apdy.

All that remains, then, is to find an algorithm which constructs dy,ds..d,, for a given quadratic.
Conjugate gradient methods are remarkable in that they find dy,ds...d,, without knowledge of A.
This is important when maximizing a function using a Taylor approximation such as (68), in that
there is no need to calculate the Hessian of the function (in the example, D2L), a step which can
be computationally expensive. A conjugate algorithm proceeds as follows:

e For an arbitrary starting point Zg, let dy = f'(Zo), where f’ is the first derivative of f.
e For k=1...n,

— set Zyx = Zyx_1 + aydy, where oy maximizes f(Zyx—1 + agdy)-
— Calculate di41 = f'(Zx) + Brdy.

The most commonly used values for 8y are (where g = f'(Zk)):

gg+1gk+1

o The Fletcher-Reeves version 8y, = T
k

T
e The Polak-Ribiere algorithm 3;, = %. When maximizing a quadratic this is the
k

same as the Fletcher-Reeves algorithm (as gfgk+1 = 0). The difference becomes important
when maximizing an approximation to a quadratic, where Polak-Ribiere updates have been
shown to be better in some cases.
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5.1.2 Generalised Conjugate Gradient Methods

A generalised conjugate gradient method is identical to the algorithm in section 5.1.1, except the
gradients are modified by some positive definite matrix W. So every mention of f’ in section 5.1.1 is
replaced by WL f/. (JJ 93) state that the use of an appropriate matrix W can significantly improve
the performance of any optimisation algorithm which uses gradients.

5.2 Accelerating EM using Generalised Conjugate Gradients

(JJ 93) first show that EM is approximately a steepest descent algorithm optimising L with the
generalised gradient § = W~!g(®) where W = (-D2°Q(@’,®’)). They do this by proving that
an EM step ® — @' is such that

®' -0~ (-D*Q(©',0")) 'g(®) (70)

where g(@) = D1L(O). (JJ 93) then define a conjugate gradient method based on the approximate
generalised gradients §(®) = @' — ©. The k’th iteration of this algorithm is:

1. Perform the k’th EM step to find ®" and calculate g; = @' — Q.

2. At the first and every pt" step thereafter, where p = the number of parameters in ©, set
di+1 = g(©). At other steps:

(a) Calculate gy = D*L(©®).

(b) Set B = %. This is an alternative to the Fletcher-Reeves and Polak-Ribiere
k
updates.

(c) Set dit1 = gxt1—Frdx.
3. Find «ay, the value of o which maximizes L(®k + adk+1), and set O3 = Ok + apdyt1.

It can be seen that the algorithm involves a modest increase in complexity over the EM algorithm,
mainly the calculation of gy = DYL(®y). (JJ 93) then pick a few example applications, and find
that their algorithm is a around 3-10 times faster than EM on usual examples, and can be 25-100
times faster on cases where EM converges particularly slowly.

5.3 Discussion

While the results in (JJ 93) are impressive, there are a number of points which are unanswered in
the paper:

e They justify the (unusual) choice of §j because it gives conjugate gradients even when the line
searchs for the «a;’s aren’t exact. But they neither prove this, nor provide a citation.
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They stress that the choice of W can be crucial when using generalised gradients. But they
never given any justification of why W = (-=D?°Q(®’,®’)) might be a good choice for W.
In particular they do not compare their algorithm to a standard conjugate gradient algorithm,
which would also require the calculation of g, but would not require the EM step to calculate
.-

The method presumably becomes increasingly useful as the maximum of L is approached,
as the quadratic approximation becomes increasingly accurate. The method runs a few EM
iterations at the start of the algorithm until change in likelihood falls below a certain threshold.
No real justification is given for this threshold, nor are tests done to see how robust the method
is to the choice of this parameter (and no indication is given of how much this parameter was
tuned to the particular problems used).

Conclusions

The following is a summary of the major points in this paper:

To derive an EM or GEM algorithm first find the function Q(®’,®) as defined in section 3.
An EM mapping f : @ — Oxy1 is then f(©) = argmaxe Q(O',0). A GEM mapping is
any f: ®x — O such that Q(f(©),0) > Q(0,0).

Section 3.2 then contains the proof, given in DLR, that L(®k4+1) > L(®k) for EM and
GEM algorithms. (Wu 83) also proved that for any EM algorithm, L(®k4+1) > L(®k) at
any non-stationary point, (see section 3.3) though this is not necessarily true for any GEM
algorithm.

Section 3.5 gives a couple of special cases — namely the exponential family of distributions, and
algebraic models — where it is easy to derive ) and the parameter values which maximize Q.
Note that the M-step for exponential families given in DLR, (39), may not have a solution,
and does not have a solution for the motivating multinomial example given at the start of
DLR. When no solution is found, the more general (41) should be used.

Section 3.6.3 describes a method for calculating the rate of convergence of an EM algorithm,
as described in DLR Theorem 4. The theory requires calculation of the Hessians of the () and
H functions at the local maximum.

(Wu 83) gives further conditions for the convergence of an EM or GEM algorithm to a sta-
tionary point of L. For an EM algorithm the most important criterion is that () is continuous
in both its parameters. See section 4.1 for the exact criteria for convergence. Major points are
that convergence to a global maximum can not, in general, be guaranteed, and furthermore
convergence to a saddle point is possible — theorem 3 of (Wu 83) gives criteria for convergence
to a local maximum rather than a saddle point, but these criteria are unlikely to apply and
are hard to prove. “Common wisdom” seems to be that parameter values should be randomly
initialised to avoid symmetries which can lead to convergence to saddle points, and that EM
should be run a few times with different starting points.
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e Section 4.2 gives the theorems provided by (Wu 83) which state conditions for the estimate
of ® to also converge. In most applications convergence of the estimate of ® is probably less
important than convergence of L though.

e (JJ 93) show that EM is approximately a steepest descent algorithm, and describe a fairly
simple modification that gives a conjugate-gradient optimisation algorithm. This is shown
to improve performance on a number of problems. The major additional complexity of the
method is the calculation of DL at each iteration.

In conclusion, DLR. provided a very general framework for defining iterative algorithms which
find local maxima of the log-likelihood in incomplete data problems. However, as they defined EM
and GEM there was not a guarantee of convergence to a stationary point of L, (Wu 83) considerably
tightened the theory by giving strict conditions for convergence. (JJ 93) show that EM, while having
the advantage of simplicity, may be a poor algorithm in some situations, and used existing algorithms
in the optimisation literature to improve convergence rates.

A major weakness in EM-style algorithms is the guarantee concerning the nature of the limit
point — global maximum, local maximum or saddle point? While examples like that in section 4.1.5
suggest that perturbing the parameters slightly will result in the parameters diverging from the
saddle point, and DLR page 10 suggest that this will always be the case, as far as we know there
is no general theory about the “stability” of a saddle point, or a general method for perturbing
the parameters in such a way that the algorithm diverges from the saddle point. Nor, as far as we
know, is there any general theory about the nature of the log-likelihood surface — conditions under
which it has a single global maximum, or under which it has no saddle points. While it may be very
difficult to formulate theories about the general case, it seems that it would be possible for special
(but extremely common) cases like HMMs or mixture models.
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[feration | A | »m [ » || & [ P2 | s | B |
0 0.3000 | 0.7000 | 0.7000 || 0.3000 | 0.3000 | 0.3000 | 0.3000
0.3000 | 0.5000 | 0.5000 || 0.3000 | 0.3000 | 0.3000 | 0.3000
0.3000 | 0.5000 | 0.5000 || 0.3000 | 0.3000 | 0.3000 | 0.3000
0.3000 | 0.5000 | 0.5000 || 0.3000 | 0.3000 | 0.3000 | 0.3000
0.3000 | 0.5000 | 0.5000 || 0.3000 | 0.3000 | 0.3000 | 0.3000
0.3000 | 0.5000 | 0.5000 || 0.3000 | 0.3000 | 0.3000 | 0.3000
0.3000 | 0.5000 | 0.5000 || 0.3000 | 0.3000 | 0.3000 | 0.3000

O O x| W Do =

Table 4: The coin example for Y = {{(HHH),(TTT),(HHH),(T'TT)}, with p; and p- initialised
to the same value. EM is stuck at a saddle point

[Ieration | X [ p [ p [[ A [ P2 [ P | p1 |
0 0.3000 | 0.7001 | 0.7000 || 0.3001 | 0.2998 | 0.3001 | 0.2998
1 0.2999 | 0.5003 | 0.4999 || 0.3004 | 0.2995 | 0.3004 | 0.2995
2 0.2999 | 0.5008 | 0.4997 || 0.3013 | 0.2986 | 0.3013 | 0.2986
3 0.2999 | 0.5023 | 0.4990 || 0.3040 | 0.2959 | 0.3040 | 0.2959
4 0.3000 | 0.5068 | 0.4971 || 0.3122 | 0.2879 | 0.3122 | 0.2879
) 0.3000 | 0.5202 | 0.4913 || 0.3373 | 0.2645 | 0.3373 | 0.2645
6 0.3009 | 0.5605 | 0.4740 || 0.4157 | 0.2007 | 0.4157 | 0.2007
7 0.3082 | 0.6744 | 0.4223 || 0.6447 | 0.0739 | 0.6447 | 0.0739
8 0.3593 | 0.8972 | 0.2773 || 0.9500 | 0.0016 | 0.9500 | 0.0016
9 0.4758 | 0.9983 | 0.0477 || 0.9999 | 0.0000 | 0.9999 | 0.0000
10 0.4999 | 1.0000 | 0.0001 || 1.0000 | 0.0000 | 1.0000 | 0.0000
11 0.5000 | 1.0000 | 0.0000 || 1.0000 | 0.0000 | 1.0000 | 0.0000

Iteration A j2) D2 D D2 D3 s |
0 0.3000 | 0.6999 | 0.7000 || 0.2999 | 0.3002 | 0.2999 | 0.3002
1 0.3001 | 0.4998 | 0.5001 || 0.2996 | 0.3005 | 0.2996 | 0.3005
2 0.3001 | 0.4993 | 0.5003 || 0.2987 | 0.3014 | 0.2987 | 0.3014
3 0.3001 | 0.4978 | 0.5010 || 0.2960 | 0.3041 | 0.2960 | 0.3041
4 0.3001 | 0.4933 | 0.5029 || 0.2880 | 0.3123 | 0.2880 | 0.3123
) 0.3002 | 0.4798 | 0.5087 || 0.2646 | 0.3374 | 0.2646 | 0.3374
6 0.3010 | 0.4396 | 0.5260 || 0.2008 | 0.4158 | 0.2008 | 0.4158
7 0.3083 | 0.3257 | 0.5777 || 0.0739 | 0.6448 | 0.0739 | 0.6448
8 0.3594 | 0.1029 | 0.7228 || 0.0016 | 0.9500 | 0.0016 | 0.9500
9 0.4758 | 0.0017 | 0.9523 || 0.0000 | 0.9999 | 0.0000 | 0.9999
10 0.4999 | 0.0000 | 0.9999 || 0.0000 | 1.0000 | 0.0000 | 1.0000
11 0.5000 | 0.0000 | 1.0000 || 0.0000 | 1.0000 | 0.0000 | 1.0000

Table 5: The coin example for Y = {{(HHH),(I'TT),(HHH),(TTT)}. If we initialise p; and p,
to be a small amount away from the saddle point p; = p2, the algorithm diverges from the saddle
point and eventually reaches the global rnaxirnu%



