[TD1: Recursive Descent J

Top-down Parsing

CMPT 379: Compilers
Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

Top-Down Parsing

1
e The parse tree is constructed P
— From the top t, 3 b
— From the left to right /™
4 7

e Terminals are seen in the orderof |
appearance in the token stream

t, 5 t5 T3 g

Recursive Descent Parsing

e Consider the grammar
—-E->T+E|T
—T—int|int*T | (E)

e Token stream is int; * int,

e Start from top-level non-terminal E
— Try the rules for E in order

Recursive Descent Parsing

Input:

int; * int,

L TryE,—> T, +E,

Try T, — int Ey
Token int matches! Failure /N
but + does not match to input T, + E,

11y T — int * T, /l\
Tokens int and * match
' %
Try T; — int Ints T

Token int matches

— input is matched but tree should match + E, Failure
Try Ty = (E;)
Token (does not match Failure

— has exhausted the choices for T,
backtrack to choices for E, 4

Recursive Descent Parsing

Try: E,— T,
Try T, — int Ey
Token int matches! : ‘
Failure
but no non-terminals left and T,
the input is not matched completely /I\
Try T, > it * T, int; * T,
Tokens int , * match \
Input: Try T, — int int,

int; * int, Token int matches!
Succeed! No non-terminal left in the tree,
input is totally matched

Preliminaries

e TOKEN: the type of all tokens
— Special tokens INT, OPEN, CLOSE, PLUS, TIMES

e The global next points to the next token in
the input

Implementing Productions

e Define boolean functions that check the
token string for match of

— A given token terminal
bool term(TOKEN tok) { return *next++ == tok; }

— A given production of S (the n-th)
bool S () {...}

— Any production of S
bool S() {...}

e These functions advance next

Implementing Productions

e For productionE —> T -
bool E{() { return T(); }

e For productionE —>T+E
bool E,() { return T() && term(PLUS) && E(); }

e For all productions of E (with backtracking)
bool E() {
TOKEN *save = next;

return (next=save, E,()) || (next=save, E,()); }

8

Implementing Productions

e For non-terminal T

bool T() { return terms(OPEN) && E() && term(CLOSE); }
bool T,() { return terms(INT) && term(TIMES) && T(); }
bool T;() { return terms(INT); }

bool T() {
TOKEN *save = next;
return (next=save, T,())

| | (next=save, T,())
| | (next=save, T5()); }

Recursive Descent Parsing

To start the parser

— Initialize next to point to the first token
— Invoke E()

Note how this simulates our previous
example

Easy to implement
But this does not always work ...

10

Left-Recursion in
Recursive Descent Parsing

e Consider a productionS —> S a
— bool S,() { return S() && term(a); }
— bool S() { return Sy(); }

e S() will get into an infinite loop

e Left-recursive grammar has a nonterminal S
-S->T.S ..

e Recursive descent parsing does not work for
left-recursive grammars

11

Elimination of Left Recursion

e Consider the left recursive grammar
—-S—>Sal|b

e S generates all strings starting with ‘b’ and
followed by a number of ‘a’

e Can rewrite using right-recursion

-S—>b¥s
—-S —>a¥ |«

12

No Immediate Left Recursion

e In general for immediate left recursion
S)S(ll | ...l SOLn | Bl |...| Bm

e All strings derived from S start with one of
B4, ..., B, and continue with several
instances of ., ..., o,

e Rewrite as
-S—>pB,5|...| By S
-S>a,5|..]a,5|¢€

13

No Immediate Left Recursion

T =) T*F =) T*F*F=) F*F*F

T THE T:FT’
F:a | €
I'b F:a
| C b

| C

T =) FT’ =) F*FT’ =) F*F*FT’) F*F*F

Remove General Left Recursion

S:Aa S:Aa

1S d Aad
| € bd

€

15

Immediate Left Recursion

S:Aa S:Aa
| b | b

A:Ac A:bdA
Aad | A’
bd A :cA

€ lad A’
| €

16

General Left Recursion

Input: grammar G with no cycles A -> A or empty rules A -> €
Output: grammar with no left recursion

Arrange nonterminals in order A, A,, As, ..., A,

fori=1ton{
forj=1to1-1 {
replace each rule A; -> A; oo where A; -> 3, | ... | B, with
therules A, >, al... 3, o

b

remove immediate left recursion among A; rules

b

17

Remove General Left Recursion

S:-Aa Order: S,A, B

b - A B:bdA'agB
A:Ac L d IbdA'fB'

I5d A:bdA DEP

' B :|I> A’|°1231?A' B’:A'agB'
B:Be TN |A'fB!

Af e | e B'

| €
S g
h

18

Summary of Recursive Descent

e Simple and general parsing strategy
— Left-recursion must be eliminated first

e Most of the time manually (but it can be done
automatically)

— Backtracking is inefficient

— In practice, backtracking is eliminated by restricting
the grammar

— Used in production compilers (e.g. gcc front-end)

19

How to compute: Does X =>* g 7

e The question Does X=* € ?’ can be written as
the predicate: nullable(X)

Nullable = {} (set containing nullable non-terminals)
Changed = True
While (changed):
changed = False
if X 1s not in Nullable:
if
I. X — g 1s in the grammar, or
2.X—=>Y, ... Y,isin the grammar and Y; is in Nullable for all i then
add X to Nullable; changed = True

20

