
Static Single Assignment
Form

CMPT 379: Compilers
Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

1

SSA Form 2

SSA Form

• Conversion from a Control Flow Graph (created from 3-address code)
into SSA Form is not trivial

• SSA creation algorithms:
• Original algorithm by Cytron et al. 1986

• Lengauer-Tarjan algorithm (see the Tiger book by Andrew W. Appel for more
details)

• Harel algorithm

2

Conversion to SSA Form

• Simple idea: add a f function for every variable at a join point

• A join point is any node in the control-flow graph with more than one
predecessor

• But: this is wasteful and unnecessary.

3

Conversion to SSA Form

4

1: a := 0

2: b := a + 1
c := c + b
a := b * 2
if a < N

3: return c

1: a1 := 0

2: a3 := f (a2, a1)
b1 := f (b0, b2)
c2 := f (c0, c1)
b2 := a3 + 1
c1 := c2 + b2
a2 := b2 * 2
if a2 < N

3: return c2

b1 is never used,
stmt can be deleted

Conversion to SSA Form

5

1: a := 0

2: b := a + 1
c := c + b
a := b * 2
if a < N

3: return c

1: a1 := 0

2: a3 := f (a2, a1)
b1 := f (b0, b2)
c2 := f (c0, c1)
b2 := a3 + 1
c1 := c2 + b2
a2 := b2 * 2
if a2 < N

3: return c2

b2 changes in each
loop. SSA is not
functional
programming!

Conversion to SSA Form (with minimal f functions)

Dominance Relation

• X dominates Y if every path from the start node to Y goes through X

• D(X) is the set of nodes that X dominates

• X strictly dominates Y if X dominates Y and X ≠ Y

7

Dominance Relation

8

1:

2:

3:

4:

5:

6: 7:

8:

9:

10: 11:

12:

13:

D(5)={6,7,8}

5 strictly
dominates
6, 7, 8

Dominance Relation

9

1:

2:

3:

4:

5:

6: 7:

8:

9:

10: 11:

12:

13:

D(5)={6,7,8}

5 strictly
dominates
6, 7, 8

Dominance Property of SSA

• Essential property of SSA form is the definition of a variable must
dominate use of the variable:
• If variable a is used in a f function in block X, then definition of a dominates

every predecessor of X

• If a is used in a non-f statement in block X, then the definition of a
dominates X.

10

Dominance Relation

11

1:

2:

3:

4: a3=f(a1,a2)

5:

6: 7:

8:

9:

10: 11:

12:

13:

a=0

Dominance Relation

12

1:

2:

3:

4:

5:

6: 7:

8: b = a

9:

10: 11:

12:

13:

a=0

Dominance Frontier

• X strictly dominates Y if X dominates Y and X ≠ Y

• Dominance Frontier (DF) of node X is the set of all nodes Y such that:
• X dominates a predecessor of Y, and
• X does not strictly dominate Y

13

Dominance Frontier

14

1:

2:

3:

4:

5:

6: 7:

8:

9:

10: 11:

12:

13:

D(5)={6,7,8}

DF(5) = {4,12,5,13}

S(6)={4,8}

S(7)={8,12}

S(8)={5,13}

Dominance Frontier

• Algorithm to compute DF(X):
• Local(X) := set of successors of X that X does not immediately

dominate
• Up(X) := if X dominates K, Up(X) is the set of nodes in DF(K) that are

not dominated by X.
• DF(X) := Union of Local(X) and (Union of Up(K) for all K that are

children of X)

15

Dominance Frontier

• ComputeDF(X):
S := {} // empty set
For each node Y in Successor(X):

If X does not strictly dominate Y:
S := S ∪ {Y} // this is Local(X), ∪ means union

For each child K of X in D(X): // X dominates K
For each element Y in ComputeDF(K):

If X does not dominate Y,
S := S ∪ {Y} // this is Up(X)

DF(X) = S; return S

16

1:

2:

3:

4:

5:

6: 7:

8:

9:

10: 11:

12:

13:

{}

{6,7,8}

{4,8} {8,12} {5,13}

{6,7}

{4,12,5,13} ⌫ ⌫

ComputeDF(5)

Dominance Frontier

• Dominance Frontier Criterion
• If node X contains definition of some variable a, then any node Y that uses a

in the set DF(X) needs a f function for a.

• Iterated Dominance Frontier
• Since a f function is itself a definition of a new variable, we must iterate the

DF criterion until no nodes in the CFG need a f function.

17

Placing f Functions

18

1: V:=_; W:=_

2: 3: V:=_

4: 5: W:=_

6:

7:

DF(3)={7}

Empty boxes
indicate uses
of variables
V, W

Placing f Functions

19

1: V:=_; W:=_

2: 3: V:=_

4: 5: W:=_

6:

7: V:= f(V,V)

DF(3)={7}

DF(5)={6}

Placing f Functions

20

1: V:=_; W:=_

2: 3: V:=_

4: 5: W:=_

6: W:= f(W,W)

DF(3)={7}

DF(5)={6}

7: V:= f(V,V)

Placing f Functions

21

1: V:=_; W:=_

2: 3: V:=_

4: 5: W:=_

6: W:= f(W,W)

DF(6)={7}

7: V:= f(V,V);
W:= f(W,W)

Rename Variables

22

1: V1:=_; W1:=_

2: 3: V2:=_

4: 5: W2:=_

6: W3:= f(W1,W2)

DF(6)={7}

7: V3:= f(V1,V2);
W4:= f(W1,W3)

Summary

• Compute the dominance frontier for each node in the flowgraph

• For each node X place a f function in each node that is in the
dominance frontier for X

• Iterate the dominance frontier algorithm above for each new variable
assignment in each f function added in the previous step

• The end result: 3-address code converted into Static Single
Assignment (SSA) form

23

