[SSA Form 2]

Static Single Assighment
Form

CMPT 379: Compilers
Instructor: Anoop Sarkar
anoopsarkar.github.io/compilers-class

SSA Form

* Conversion from a Control Flow Graph (created from 3-address code)
into SSA Form is not trivial
* SSA creation algorithms:

 Original algorithm by Cytron et al. 1986

* Lengauer-Tarjan algorithm (see the Tiger book by Andrew W. Appel for more
details)

* Harel algorithm

Conversion to SSA Form

* Simple idea: add a ¢ function for every variable at a join point

* Ajoin point is any node in the control-flow graph with more than one
predecessor

* But: this is wasteful and unnecessary.

Conversion to SSA Form

bl is never used,
stmt can be deleted

l:a:=0 l:al:=0

1
1
I
I
I
/]

2:a3 :=¢ (a2, al) ,’I
bl :=¢ (b0,b2) | «uue’
c2 :=¢ (c0,cl)
b2:=a3+1
cl :=c2+Db2
a2 :=b2 *2
if a2 <N

3: return C

3: return c2

Conversion to SSA Form b2 changes in each
loop. SSA is not

functional
l:al :=0 programming!
i
|
2:a3 := ¢ (a2, al) J

bl := ¢ (b0, b2) ,,'
c2:=¢ (cO,cl) s
b2:=a3+1 e’
cl :=c2+Db2
a2 :=b2 *2

if a2 <N

3: return C

3: return c2

Conversion to SSA Form (with minimal ¢ functions)

Dominance Relation

* X dominates Y if every path from the start node to Y goes through X

e D(X) is the set of nodes that X dominates

e X strictly dominates Y if X dominates Y and X #Y

Dominance

D(5)={6,7,8}

5 strictly

dominates
6,7,8

Relation

P

2:

1:

5:

e

\

9:

(o N A_

: 1

T

13:

pog

/

Dominance Relation

D(5)={6,7.8} 1:

5 strictly

dominates
6,7,8

Dominance Property of SSA

* Essential property of SSA form is the definition of a variable must
dominate use of the variable:

* If variable a is used in a ¢ function in block X, then definition of a dominates
every predecessor of X

* If a is used in a non-¢ statement in block X, then the definition of a
dominates X.

Dominance Relation

4: a3=¢(al ,a2)

\ !

1:| a=0
/ \
2: 5: 9:
<\3/: Al :
| N

Dominance Relation

Dominance Frontier

e X strictly dominates Y if X dominates Y and X #Y

* Dominance Frontier (DF) of node X is the set of all nodes Y such that:
* X dominates a predecessor of Y, and

* X does not strictly dominate Y

Dominance Frontier

D(5)={6,7,3} 1
'

DF(5) = {4,12,5,13} \

13:

14

Dominance Frontier

 Algorithm to compute DF(X):

 Local(X) := set of successors of X that X does not immediately
dominate

* Up(X) :=if X dominates K, Up(X) is the set of nodes in DF(K) that are
not dominated by X.

* DF(X) := Union of Local(X) and (Union of Up(K) for all K that are
children of X)

Dominance Frontier

» ComputeDF(X): {6,7}

5:= 1) /

For each node Y in Successor(X):

If X does not strictly dominate Y:
S :=S U {Y}// this is Local(X), U means union

\
For each child K of X in D(X): // X dominates K {}
For each element Y in ComputeDF(K): \
If X does not dominate Y, {6 7 8}
27

S:=S U {Y}// thisis Up(X)
DF(X) = S; return S / X \

{4,12,5,13} 4« «,12} {513]

Dominance Frontier

* Dominance Frontier Criterion

* If node X contains definition of some variable a, then any node Y that uses a
in the set DF(X) needs a ¢ function for a.

* [terated Dominance Frontier

* Since a ¢ function is itself a definition of a new variable, we must iterate the
DF criterion until no nodes in the CFG need a ¢ function.

Placing ¢ Functions

Empty boxes
indicate uses
of variables
V, W

1: Vi=_; W:=

T

2:

3: Vi=

T

DF(3)={7}

5: W:i=_

T~

6:

=

Placing ¢ Functions DE(3)={7)

1: Vi=_; Wi=_ DF(5)={6}

/ _\\

4: 5: W::_

\/
6:
/

7: V:i= o(V,V)

2:

Placing ¢ Functions

1: Vi=_; W:i=_

/\

2:

4. 5: W:i=_

\/

6: W:= d¢(W,W)

=

7: V:i= o(V,V)

DF(3)={7}

DF(5)={6}

Placing ¢ Functions

1: Vi=_; W:i=_

/\

2:

4. 5: W:i=_

\/

6: W:= d¢(W,W)

=

7: V= o(V,V);
W:= ¢(W,W)

DF(6)={7}

Rename Variables

DF(6)={7}
I: VIi=_; Wli=_
2: 3: V2:=_
4- 5: W2:=_

\/

6: W3:= ¢(W1,W2)

.

7: V3:= §(V1,V2);
Wa:= G(W1,W3)

Summary

* Compute the dominance frontier for each node in the flowgraph

* For each node X place a ¢ function in each node that is in the
dominance frontier for X

* [terate the dominance frontier algorithm above for each new variable
assignment in each ¢ function added in the previous step

* The end result: 3-address code converted into Static Single
Assignment (SSA) form

