Static Single Assignment Form

CMPT 379: Compilers
Instructor: Anoop Sarkar
anoopsarkar.github.io/compilers-class

SSA Form

- Conversion from a Control Flow Graph (created from 3-address code) into SSA Form is not trivial
- SSA creation algorithms:
- Original algorithm by Cytron et al. 1986
- Lengauer-Tarjan algorithm (see the Tiger book by Andrew W. Appel for more details)
- Harel algorithm

Conversion to SSA Form

- Simple idea: add a ϕ function for every variable at a join point
- A join point is any node in the control-flow graph with more than one predecessor
- But: this is wasteful and unnecessary.

Conversion to SSA Form

Conversion to SSA Form

Conversion to SSA Form (with minimal ϕ functions)

Dominance Relation

- X dominates Y if every path from the start node to Y goes through X
- $D(X)$ is the set of nodes that X dominates
- X strictly dominates Y if X dominates Y and $\mathrm{X} \neq \mathrm{Y}$

Dominance Relation

Dominance Relation

Dominance Property of SSA

- Essential property of SSA form is the definition of a variable must dominate use of the variable:
- If variable a is used in a ϕ function in block X, then definition of a dominates every predecessor of X
- If a is used in a non- ϕ statement in block X, then the definition of a dominates X .

Dominance Relation

Dominance Relation

Dominance Frontier

- X strictly dominates Y if X dominates Y and $\mathrm{X} \neq \mathrm{Y}$
- Dominance Frontier (DF) of node X is the set of all nodes Y such that:
- X dominates a predecessor of Y , and
- X does not strictly dominate Y

Dominance Frontier

Dominance Frontier

- Algorithm to compute $\operatorname{DF}(\mathrm{X})$:
- Local(X) := set of successors of X that X does not immediately dominate
- $\mathrm{Up}(\mathrm{X}):=$ if X dominates $\mathrm{K}, \mathrm{Up}(\mathrm{X})$ is the set of nodes in $\mathrm{DF}(\mathrm{K})$ that are not dominated by X .
- DF(X) := Union of Local (X) and (Union of $\mathrm{Up}(\mathrm{K})$ for all K that are children of X)

ComputeDF(5)

Dominance Frontier

- ComputeDF(X): $\{6,7\}$
$S:=\{ \} / /$ empty set
For each node Y in Successor(X):
If X does not strictly dominate Y :

$\mathrm{S}:=\mathrm{S} \cup\{\mathrm{Y}\} / /$ this is Local (X), U means union
For each child K of X in $D(X)$: // X dominates K,
For each element Y in ComputeDF(K):
If X does not dominate Y,

$$
S:=S \cup\{Y\} / / \text { this is } U p(X)
$$

DF(X) = S; return S

Dominance Frontier

- Dominance Frontier Criterion
- If node X contains definition of some variable a, then any node Y that uses a in the set $\operatorname{DF}(X)$ needs a ϕ function for a.
- Iterated Dominance Frontier
- Since a ϕ function is itself a definition of a new variable, we must iterate the DF criterion until no nodes in the CFG need a ϕ function.

Placing ϕ Functions

$$
\mathrm{DF}(3)=\{7\}
$$

Placing ϕ Functions

Placing ϕ Functions

$$
D F(5)=\{6\}
$$

Placing ϕ Functions

$$
\mathrm{DF}(6)=\{7\}
$$

Rename Variables
$D F(6)=\{7\}$

Summary

- Compute the dominance frontier for each node in the flowgraph
- For each node X place a ϕ function in each node that is in the dominance frontier for X
- Iterate the dominance frontier algorithm above for each new variable assignment in each ϕ function added in the previous step
- The end result: 3-address code converted into Static Single Assignment (SSA) form

