
Static Single Assignment 
Form

CMPT 379: Compilers
Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

1

SSA1: Intro to SSA



Control Flow Graph (CFG)

int main() {

extern int f(int);

int i;

int *a;

for (i = 0; 

i < 10;

i = i + 1) 

{ a[i] = f(i); }

}

2

i = 0

i < 10

a[i] = f(i);
i = i+1;

Entry

Exit

Basic
Blocks



Control Flow Graph in 3-address code

3

main:

i = 0 

L0:

t1 = 10 

t2 = i < t1 

ifFalse t2 Goto L1 

t3 = 4 

t4 = t3 * i 

t5 = a + t4 

param i

t6 = call f, 1

pop 4 

*(t5) = t6 

t7 = 1 

i = i + t7 

goto L0 

L1:

return

i = 0

L0:
t1 = 10 
t2 = i < t1 
ifFalse t2 goto L1 

t3 = 4 
t4 = t3 * i 
t5 = a + t4 
t6 = call f(i)
pop 4 
*(t5) = t6 
t7 = 1 
i = i + t7 
goto L0 

Entry

Exit

definition/gen

reaches

reaches

kill

unambiguous



SSA Form

• def-use chains keep track of where variables were defined and where 
they were used

• Consider the case where each variable has only one definition in the 
intermediate representation

• One static definition, accessed many times

• Static Single Assignment Form (SSA)

4



SSA Form

• SSA is useful because
• Dataflow analysis and optimization is simpler when each variable has only 

one definition

• If a variable has N uses and M definitions (which use N+M instructions) it 
takes N*M to represent def-use chains

• Complexity is the same for SSA but in practice it is usually linear in number of 
definitions

• SSA simplifies the register interference graph

5



SSA Form

• Original Program

a := x + y
b := a - 1
a := y + b
b := x * 4
a := a + b

• SSA Form

a1 := x + y
b1 := a1 - 1
a2 := y + b1
b2 := x * 4
a3 := a2 + b2

6

what about conditional branches?



SSA Form

7

1: b := M[x]
a := 0

2: if b < 4

3: a := b

4: c := a+b

1: b1 := M[x]
a1 := 0

2: if b1 < 4

3: a2 := b1

4: a3 := f (a2, a1)
c1 := a3 + b1



Edge-split SSA Form

8

1: b := M[x]
a := 0

2: if b < 4

3: a := b

4: c := a+b

1: b1 := M[x1]
a1 := 0

2: if b1 < 4

3: a2 := b1

4: a3 := f (a2, a1)
c1 := a3 + b1

5:

Unique
Successor &

Unique
Predecessor


