
Runtime Support

CMPT 379: Compilers
Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

1

Runtime



Runtime Support

• Management of runtime resources

• Correspondence between:
• Static (compile-time) structures

• Dynamic (run-time) structures

• Storage organization 
• Using memory to store data structures of the executing program
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Invoke the Program

• Execution of the program is initially under the control of the 
operating system

• When program is invoked:
• The OS allocates space for the program

• The code is loaded into part of the memory

• The OS jumps to the entry point (i.e., main)
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Memory

• Compiler is responsible for:
• Generating code
• Orchestrating use of the data area
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Procedure Activation

• Two assumptions about programming languages
• Execution is sequential; control moves from one point in a program 

to another in a well-defined order
• Violated by concurrency

• When a procedure is called, control always returns to the point 
immediately after the call
• Violated by exceptions
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Procedure Activation

• An invocation of procedure P is an activation of P

• The lifetime of an activation of P is
• All the steps to execute P
• Including all the steps in procedures P calls
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Procedure Activation

• The lifetime of a variable x is the portion of execution in 
which x is defined (until x is de-allocated)

• Lifetime is a dynamic (run-time) concept

• Scope is a static concept
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Activation Trees

•When P calls Q, then Q returns before P returns

• Lifetimes of procedure activations are properly nested

• Activation lifetimes (sequence of function calls) can be 
depicted as a tree: activation tree
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Activation Tree
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Activation Tree

• The activation tree depends on run-time behavior

• The activation tree may be different for every program input

• Since activations are properly nested, a stack can track  
currently active procedures
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Stack of Active Procedures
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Stack of Active Procedures
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Stack of Active Procedures
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Stack of Active Procedures
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Stack of Active Procedures
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Memory Organization
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Activation Records

• The information needed to manage one procedure activation is 
called an activation record or frame

• If procedure F calls G, then G’s frame contains info about F and G

• F is suspended until G complete, at which point F resumes

• G’s frame contains information needed to 
• Complete execution of G

• Resumes execution of F
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Activation Records / Frames

• A frame contains:
• Control link (pointer to the caller frame)

• Local data

• Snapshot of machine state (important registers)

• Return address

• Link to global data

• Parameters passed to function

• Return value for the caller
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Activation Record Organization

• There is nothing special about this organization
• Can rearrange order of frame elements

• Can divide caller/callee responsibilities differently 

• An organization is better if it improves execution speed or simplifies code 
generation

• Real compilers hold as much of the frame as possible in registers
• Especially the method result and arguments
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Global Variables

• All references to a global variable point to the same object
• Cannot store a global in an activation record

• Globals are assigned a fixed address once 
• Variables with fixed address are “statically allocated”

• Depending on the language, there may be other statically allocated 
values
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Memory Organization
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Heap Allocation

• Any value that outlives the procedure that creates it cannot be kept 
in activation record
int* foo() {int *bar = new int[size]; return bar;}

The bar value must survive de-allocation of foo’s activation record

• Languages with dynamically allocated data use a heap to store 
dynamic data
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Memory organization

• The code area contains object code
• For many languages, fixed size and read only

• The static area contain data (not code) with fixed addresses (e.g., global 
data)
• Fixed size, may be readable or writable

• The stack contains a frame for each currently active procedure 
• Each frame usually has a variable size, contains all locals

• Heap contains all other data
• In C, heap is managed by malloc and free
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Heap and Stack Management

• Both the heap and stack grow

• Must take care that they do not grow into each other

• Solution: start heap and stack at opposite ends of memory and let 
them grow towards each other
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Memory Organization
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Alignment

• Most modern machines are 64 bit
• 8 bits in a byte 

• 4 or 8 bytes in a word

• Machines are either byte or word addressable

• Data is word aligned if it begins at a word boundary

• Most machines have alignment restrictions
• Severe performance penalties for poor alignment
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Padding

• Example: String

“Hello”
Takes 6 characters (including a terminating \0)

• To word align next word, add 2 padding characters

• The padding is not part of the string, it is unused memory
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H e l l o \0



Padding

• Compilers may insert unused bytes called "padding bytes" after 
structure members to ensure that each member is appropriately 
aligned.

struct widget {

char m1;

int m2;

char m3;

};
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On a word aligned machine:
add 3 bytes of padding 
after m1 and m3



Summary

• Run-time support for functions

• Dealing with (potentially infinite) recursion

• Activation records for each function invocation

• Storage allocation for activation records in recursive function calls

• Stack allocation is easiest to implement while retaining recursion

• Functional programming languages use heap allocation
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Storage Allocation for Functions

• Stack Allocation Ö
• Storage for recursive functions is organized as a stack: last-in first-out (LIFO) 

order

• Activation records are associated with each function activation

• Activation records are pushed onto the stack when a call is made to the 
function

• Size of activation records can be fixed or variable
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Storage Allocation for Functions

• Stack Allocation Ö
• Sometimes a minimum size is required

• Variable length data is handled using pointers

• Locals are deleted after activation ends

• Caller locals are reinstated and execution continues

• C, Pascal and most modern programming languages
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Storage Allocation for Functions

• Heap Allocation
• In some special cases stack allocation is not possible

• If local variables must be retained after the activation ends

• If called activation outlives the caller

• Anything that violates the last-in first-out nature of stack allocation e.g. 
closures in Lisp and other functional PLs
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Storage Allocation for Functions

• Function Composition: (f•g)(x) = f(g(x))
class Compose {

fun sq (int x) { return (x * x); }

fun f (fun m) { return (m•h); }

fun h () { return sq; }

fun g (fun z) { return (sq•z); }

int main() { 
fun v = g•h;

print_int((v())(3)); 

}

}
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Storage Allocation for Functions

• Function Composition: (f•g)(x) = f(g(x))
class Compose {

fun sq (int x) { return (x * x); }

fun f (fun m) { return (m•h); }

fun h () { return sq; }

fun g (fun z) { return (sq•z); }

int main() { 
fun v = g•h;

callout(“print_int”, (v())(3)); 

}

}
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v = g•h

v() = (g•h)()

v() = g(h())

v() = g(sq)

v() = (sq•sq)

v()(3) = (sq•sq)(3)

v()(3) = (sq(sq(3))



MIPS Stack frame
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#include <stdio.h>

main () 
{ 

int n = 10;
printf("The factorial of 10 is %d\n", fact(n)); 

} 

int fact (int n) 
{ 

if (n < 1) 
return(1); 

else 
return(n * fact(n - 1)); 

} 
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return address in main

$a0(=10) saved in stack



MIPS Run-time Memory
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MIPS Stack frame
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MIPS stack frame
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Parameter Passing Conventions

• Differences based on:
• The parameter represents an r-value (the rhs of an expr)

• An l-value

• Or the text of the parameter itself

• Call by Value
• Each parameter is evaluated

• Pass the r-value to the function

• No side-effect on the parameter
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Parameter Passing Conventions

• Call by Reference
• Also called call by address/location

• If the parameter is a name or expr that is an l-value then pass the l-value

• Else create a new temporary l-value and pass that

• Typical example: passing array elements a[i]
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Parameter Passing Conventions

• Copy Restore Linkage
• Pass only r-values to the called function (but keep the l-value around for 

those parameters that have it)
• When control returns back, take the r-values and copy it into the l-values for 

the parameters that have it
• Fortran

• Call by Name
• Function is treated like a macro (a #define) or in-line expansion
• The parameters are literally re-written as passed arguments (keep caller 

variables distinct by renaming)
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Parameter Passing Conventions

• Lazy evaluation
• In some languages, call-by-name is accomplished by sending a function (also 

called a thunk) instead of an r-value

• When the r-value is needed the function is called with zero arguments to 
produce the r-value

• This avoids the time-consuming evaluation of r-values which may or may not 
be used by the called function (especially when you consider short-circuit 
evaluation)

• Used in lazy functional languages
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Parameter Passing Conventions

• Call-by-need
• Similar to lazy evaluation, but more efficient

• To avoid executing similar r-values multiple times, some languages used a 
memo slot to avoid repeated function evaluations

• A function parameter is only evaluated when used inside the called function

• When used multiple times there is no overhead due to the memo table

• Haskell
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