
Runtime Support

CMPT 379: Compilers
Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

1

Runtime

Runtime Support

• Management of runtime resources

• Correspondence between:
• Static (compile-time) structures

• Dynamic (run-time) structures

• Storage organization
• Using memory to store data structures of the executing program

2

Invoke the Program

• Execution of the program is initially under the control of the
operating system

• When program is invoked:
• The OS allocates space for the program

• The code is loaded into part of the memory

• The OS jumps to the entry point (i.e., main)

3

Memory

• Compiler is responsible for:
• Generating code
• Orchestrating use of the data area

4

Memory

High address

Low address

code

Data space

Procedure Activation

• Two assumptions about programming languages
• Execution is sequential; control moves from one point in a program

to another in a well-defined order
• Violated by concurrency

• When a procedure is called, control always returns to the point
immediately after the call
• Violated by exceptions

5

Procedure Activation

• An invocation of procedure P is an activation of P

• The lifetime of an activation of P is
• All the steps to execute P
• Including all the steps in procedures P calls

6

Procedure Activation

• The lifetime of a variable x is the portion of execution in
which x is defined (until x is de-allocated)

• Lifetime is a dynamic (run-time) concept

• Scope is a static concept

7

Activation Trees

•When P calls Q, then Q returns before P returns

• Lifetimes of procedure activations are properly nested

• Activation lifetimes (sequence of function calls) can be
depicted as a tree: activation tree

8

Activation Tree

9

Start

Q(1,9)

P(1,9) Q(1,3) Q(5,9)

Q(1,0)P(1,3) P(5,9)Q(2,3)

P(2,3) Q(2,1) Q(3,3)

Q(5,5) Q(7,9)

P(7,9) Q(7,7) Q(9,9)

int Q(int m, int n) {
if (n > m) {
int i = P(m, n);
Q(m, i-1); Q(i+1, n);

}
}

Activation Tree

• The activation tree depends on run-time behavior

• The activation tree may be different for every program input

• Since activations are properly nested, a stack can track
currently active procedures

10

Stack of Active Procedures

11

Start

Q(1,3)

P(1,3)

int Q(int m, int n) {
if (n > m) {
int i = P(m, n);
Q(m, i-1); Q(i+1, n);

}
}

Q(1,3)

stack

P(1,3)

Stack does not keep track of entire activation tree, just active procedures

Stack of Active Procedures

12

Start

Q(1,3)

Q(1,0)P(1,3)

int Q(int m, int n) {
if (n > m) {
int i = P(m, n);
Q(m, i-1); Q(i+1, n);

}
}

Q(1,3)

stack

Q(1,0)

Stack does not keep track of entire activation tree, just active procedures

Stack of Active Procedures

13

Start

Q(1,3)

Q(1,0)P(1,3) Q(2,3)

P(2,3)

Q(1,3)

stack

Q(2,3)
P(2,3)

Stack does not keep track of entire activation tree, just active procedures

int Q(int m, int n) {
if (n > m) {
int i = P(m, n);
Q(m, i-1); Q(i+1, n);

}
}

Stack of Active Procedures

14

Start

Q(1,3)

Q(1,0)P(1,3) Q(2,3)

P(2,3) Q(2,1)

Q(1,3)

stack

Q(2,3)
Q(2,1)

Stack does not keep track of entire activation tree, just active procedures

int Q(int m, int n) {
if (n > m) {
int i = P(m, n);
Q(m, i-1); Q(i+1, n);

}
}

Stack of Active Procedures

15

Start

Q(1,3)

Q(1,0)P(1,3) Q(2,3)

P(2,3) Q(2,1) Q(3,3)

Q(1,3)

stack

Q(2,3)
Q(3,3)

Stack does not keep track of entire activation tree, just active procedures

int Q(int m, int n) {
if (n > m) {
int i = P(m, n);
Q(m, i-1); Q(i+1, n);

}
}

Memory Organization

16

Memory

High address

Low address

code

stack

Activation Records

• The information needed to manage one procedure activation is
called an activation record or frame

• If procedure F calls G, then G’s frame contains info about F and G

• F is suspended until G complete, at which point F resumes

• G’s frame contains information needed to
• Complete execution of G

• Resumes execution of F

17

Activation Records / Frames

• A frame contains:
• Control link (pointer to the caller frame)

• Local data

• Snapshot of machine state (important registers)

• Return address

• Link to global data

• Parameters passed to function

• Return value for the caller

18

19

code

High
address

Low address

Arguments
(a1,…aN)
Local and

temporary data
Caller FP

Return address

Stack frame
for function
f(a1,…aN)

Frame Pointer

Stack Pointer

Result of f(…)

Call g(a1,…aM)

20

code

High
address

Low address

Arguments
(a1,…aN)
Local and

temporary data
Caller FP

Return address

Stack frame
for function
f(a1,…aN)

Stack Pointer

Result of f(…)

Result of g(…)

Frame Pointer

Call g(a1,…aM)

21

code

High
address

Low address

Arguments
(a1,…aN)
Local and

temporary data
Caller FP

Return address

Stack frame
for function
f(a1,…aN)

Stack Pointer

Result of f(…)

Result of g(…)

Frame Pointer

Arguments
(a1,…aM)

Call g(a1,…aM)

22

code

High
address

Low address

Arguments
(a1,…aN)
Local and

temporary data
Caller FP

Return address

Stack frame
for function
f(a1,…aN)

Local and
temporary data

Caller FP
Return address

Arguments
(a1,…aM)

Stack frame
for function
g(a1,…aM)

code
Stack Pointer

Result of f(…)

Result of g(…)

Frame Pointer

Call g(a1,…aM)

23

code

High
address

Low address

Arguments
(a1,…aN)
Local and

temporary data
Caller FP

Return address

Stack frame
for function
f(a1,…aN)

Local and
temporary data

Caller FP
Return address

Arguments
(a1,…aM)

Stack frame
for function
g(a1,…aM)

code

Frame Pointer

Stack Pointer

Result of f(…)

Result of g(…)

24

code

High
address

Low address

Arguments
(a1,…aN)
Local and

temporary data
Caller FP

Return address

Stack frame
for function
f(a1,…aN)

Local and
temporary data

Caller FP
Return address

Arguments
(a1,…aM)

Stack frame
for function
g(a1,…aM)

code

Frame Pointer

Stack Pointer

Result of f(…)

Result of g(…)

25

code

High
address

Low address

Arguments
(a1,…aN)
Local and

temporary data
Caller FP

Return address

Stack frame
for function
f(a1,…aN)

Local and
temporary data

Caller FP
Return address

Arguments
(a1,…aM)

Stack frame
for function
g(a1,…aM)

code

Frame Pointer

Stack Pointer

Result of f(…)

Result of g(…)

26

High
address

Low address

Result of f(…)
Arguments
(a1,…aN)
Local and

temporary data
Caller FP

Return address

Stack frame
for function
f(a1,…aN)

Result of g(…)

Local and
temporary data

Caller FP
Return address

Arguments
(a1,…aM)

code

Frame Pointer

Stack Pointer

27

High
address

Low address

Result of f(…)
Arguments
(a1,…aN)
Local and

temporary data
Caller FP

Return address

Stack frame
for function
f(a1,…aN)

code

Frame Pointer

Stack Pointer

Activation Record Organization

• There is nothing special about this organization
• Can rearrange order of frame elements

• Can divide caller/callee responsibilities differently

• An organization is better if it improves execution speed or simplifies code
generation

• Real compilers hold as much of the frame as possible in registers
• Especially the method result and arguments

28

Global Variables

• All references to a global variable point to the same object
• Cannot store a global in an activation record

• Globals are assigned a fixed address once
• Variables with fixed address are “statically allocated”

• Depending on the language, there may be other statically allocated
values

29

Memory Organization

30

Memory

High address

Low address

code

stack

Static Data

Heap Allocation

• Any value that outlives the procedure that creates it cannot be kept
in activation record
int* foo() {int *bar = new int[size]; return bar;}

The bar value must survive de-allocation of foo’s activation record

• Languages with dynamically allocated data use a heap to store
dynamic data

31

Memory organization

• The code area contains object code
• For many languages, fixed size and read only

• The static area contain data (not code) with fixed addresses (e.g., global
data)
• Fixed size, may be readable or writable

• The stack contains a frame for each currently active procedure
• Each frame usually has a variable size, contains all locals

• Heap contains all other data
• In C, heap is managed by malloc and free

32

Heap and Stack Management

• Both the heap and stack grow

• Must take care that they do not grow into each other

• Solution: start heap and stack at opposite ends of memory and let
them grow towards each other

33

Memory Organization

34

Memory

High address

Low address

code

Stack

Static Data

Heap

Stack Pointer

Heap
allocation
pointer

Alignment

• Most modern machines are 64 bit
• 8 bits in a byte

• 4 or 8 bytes in a word

• Machines are either byte or word addressable

• Data is word aligned if it begins at a word boundary

• Most machines have alignment restrictions
• Severe performance penalties for poor alignment

35

Padding

• Example: String

“Hello”
Takes 6 characters (including a terminating \0)

• To word align next word, add 2 padding characters

• The padding is not part of the string, it is unused memory

36

H e l l o \0

Padding

• Compilers may insert unused bytes called "padding bytes" after
structure members to ensure that each member is appropriately
aligned.

struct widget {

char m1;

int m2;

char m3;

};

37

On a word aligned machine:
add 3 bytes of padding
after m1 and m3

Summary

• Run-time support for functions

• Dealing with (potentially infinite) recursion

• Activation records for each function invocation

• Storage allocation for activation records in recursive function calls

• Stack allocation is easiest to implement while retaining recursion

• Functional programming languages use heap allocation

38

Extra Slides

Storage Allocation for Functions

• Stack Allocation Ö
• Storage for recursive functions is organized as a stack: last-in first-out (LIFO)

order

• Activation records are associated with each function activation

• Activation records are pushed onto the stack when a call is made to the
function

• Size of activation records can be fixed or variable

40

Storage Allocation for Functions

• Stack Allocation Ö
• Sometimes a minimum size is required

• Variable length data is handled using pointers

• Locals are deleted after activation ends

• Caller locals are reinstated and execution continues

• C, Pascal and most modern programming languages

41

Storage Allocation for Functions

• Heap Allocation
• In some special cases stack allocation is not possible

• If local variables must be retained after the activation ends

• If called activation outlives the caller

• Anything that violates the last-in first-out nature of stack allocation e.g.
closures in Lisp and other functional PLs

42

Storage Allocation for Functions

• Function Composition: (f•g)(x) = f(g(x))
class Compose {

fun sq (int x) { return (x * x); }

fun f (fun m) { return (m•h); }

fun h () { return sq; }

fun g (fun z) { return (sq•z); }

int main() {
fun v = g•h;

print_int((v())(3));

}

}

43

Storage Allocation for Functions

• Function Composition: (f•g)(x) = f(g(x))
class Compose {

fun sq (int x) { return (x * x); }

fun f (fun m) { return (m•h); }

fun h () { return sq; }

fun g (fun z) { return (sq•z); }

int main() {
fun v = g•h;

callout(“print_int”, (v())(3));

}

}

44

v = g•h

v() = (g•h)()

v() = g(h())

v() = g(sq)

v() = (sq•sq)

v()(3) = (sq•sq)(3)

v()(3) = (sq(sq(3))

MIPS Stack frame

45

Frame pointer

Stack pointer

In MIPS, Argument 1-4
are provided to the
function in registers
$a0-$a3

Return address
in $ra

46

#include <stdio.h>

main ()
{

int n = 10;
printf("The factorial of 10 is %d\n", fact(n));

}

int fact (int n)
{

if (n < 1)
return(1);

else
return(n * fact(n - 1));

}

47

return address in main

$a0(=10) saved in stack

MIPS Run-time Memory

48

MIPS Stack frame

49

MIPS stack frame

50

$a3
$a2
$a1
$a0 4

4
4
4

16

(n*4)($fp)
for param n

$fp

$sp

$ra
$fp

Parameter Passing Conventions

• Differences based on:
• The parameter represents an r-value (the rhs of an expr)

• An l-value

• Or the text of the parameter itself

• Call by Value
• Each parameter is evaluated

• Pass the r-value to the function

• No side-effect on the parameter

51

Parameter Passing Conventions

• Call by Reference
• Also called call by address/location

• If the parameter is a name or expr that is an l-value then pass the l-value

• Else create a new temporary l-value and pass that

• Typical example: passing array elements a[i]

52

Parameter Passing Conventions

• Copy Restore Linkage
• Pass only r-values to the called function (but keep the l-value around for

those parameters that have it)
• When control returns back, take the r-values and copy it into the l-values for

the parameters that have it
• Fortran

• Call by Name
• Function is treated like a macro (a #define) or in-line expansion
• The parameters are literally re-written as passed arguments (keep caller

variables distinct by renaming)

53

Parameter Passing Conventions

• Lazy evaluation
• In some languages, call-by-name is accomplished by sending a function (also

called a thunk) instead of an r-value

• When the r-value is needed the function is called with zero arguments to
produce the r-value

• This avoids the time-consuming evaluation of r-values which may or may not
be used by the called function (especially when you consider short-circuit
evaluation)

• Used in lazy functional languages

54

Parameter Passing Conventions

• Call-by-need
• Similar to lazy evaluation, but more efficient

• To avoid executing similar r-values multiple times, some languages used a
memo slot to avoid repeated function evaluations

• A function parameter is only evaluated when used inside the called function

• When used multiple times there is no overhead due to the memo table

• Haskell

55

