| OPT4: Code Optimization |

Code Optimization

CMPT 379: Compilers
Instructor: Anoop Sarkar
anoopsarkar.github.io/compilers-class

Code Optimization

* There is no fully optimizing compiler O

* Let’s assume O exists. It takes a program P and produces output
Opt(P) which is the smallest possible

* Imagine a program Q that produces no output and never terminates,
then Opt(Q) could be:

Ll: goto L1

* Then to check if a program P never terminates on some inputs, check
if Opt(P(i)) is equal to Opt(Q) = Solves the Halting Problem

* Full Employment Theorem for Compiler Writers, see Rice(1953)

Optimizations

* Non-Optimizations

* Correctness of optimizations

* Optimizations must not change the meaning of the program

* Types of optimizations

* Local optimization and peephole optimization

~lobal dataf] i £

* Static Single Assignment (SSA) Form

e Amdahl’s Law

Non-Optimizations

enum { GOOD, BAD };

extern int test_condition();

void check() {

int rc;

rc = test_condition();
if (rc != GOOD) {
exit(rc);
}
}

enum { GOOD, BAD };

extern int test_condition();

void check() {

int rc;

if ((rc = test_condition())) {
exit(rc);

}

}

Which version of check runs faster?

Types of Optimizations

* High-level optimizations
 function inlining
* Machine-dependent optimizations

* e.g., peephole optimizations, instruction scheduling

* Local optimizations or Transformations

e within basic block

Types of Optimizations

* Global optimizations or Data flow Analysis
* across basic blocks
» within one procedure (intraprocedural)
» whole program (interprocedural)

 pointers (alias analysis)

Maintaining Correctness

 What does this program func main() int 'ngff:ﬁ:ﬁﬁ}'
? int; |
output? var x int; delay slot)
3 if (false) { =
Not: x=3/(3-3);
} else {

S decafcomp byzero.decaf
X=3;

}
print_int(x);
}

Divide by zero exception

Peephole Optimization

e Redundant instruction elimination

* If two instructions perform that same function and are in the same basic
block, remove one

 Redundant loads and stores
loadtl =3
loadtl =4

e Remove unreachable code

Peephole Optimization

* Flow control optimization

goto L1
L1:
goto L2

Algebraic simplification

Reduction in strength
* Use faster instructions whenever possible

Use of Machine Idioms

Filling delay slots

Constant folding & propagation

* Constant folding

e compute expressions with known values at compile time

 Constant propagation

* if constant assigned to variable, replace uses of variable with constant unless
variable is reassigned

Constant folding & propagation

* Copy Propagation

Transformations

e Structure preserving transformations

« Common subexpression elimination

a=b+c
b:=a-d
c:=b+c

d:=a-d (= b)

Transformations

 Dead-code elimination (combines copy propagation with
removal of unreachable code)

if (debug) { f(); } /* debug := false (as a constant) */
if (false) { f(); } /* constant folding */

using dead-code elimination, code for f() is removed
X = t3 x = 13

t4 := x becomes t4 := t3

Transformations

* Renaming temporary variables
t1 := b+c can be changed to t2 := b+c
replace all instances of t1 with t2

* Interchange of statements
tl := b+c t2 1= x+y
t2 :=x+y can be converted to tl :=b+c

(Can be combined with branch delay slots or load delay
slots)

Transformations

* Algebraic transformations
d:=a+0 (= a)
d:=d*1 (= eliminate)

* Reduction of strength

d=a**2(=a*a)

Code Optimization for SSA Form

Optimizations using SSA

e SSA form contains statements, basic blocks and variables

 Dead-code elimination

* if there is a variable v with no uses and def of v has no
side-effects, delete statement defining v

*if z:= ¢ (x, y) then eliminate this stmt if no defs for x,y

Optimizations using SSA

* Constant Propagation

e if v:=c for some constant c then replace v with c¢ for all
uses of v

v:=0(cl, c2, ..., cn)where all c; are equal to c can be
replaced by v :=c¢

* In practice, all phi functions will be binary: ¢ (c1, c2)

Optimizations using SSA

1:i11:=1j1:=1
kli:=0

k2 := d(k4, k1)

2:j2 :=(j4, j1)

if k2 <100

O

3:ifj2< 20 4: return j2

\

5:j3:=il 6:j5 :; k2
k3 := k2+1 k5 := k2+1

—
7:j4 = 0(j3, j5)
k4 := ¢(k3,k5)

Optimizations using SSA

* Conditional Constant Propagation
* In previous flow graph, is j always equal to 17

* If j = 1 always, then block 6 will never execute and so j :=i
and j := 1 always

* If j > 20 then block 6 will execute, and j := k will be
executed so that eventually j > 20

* Which will happen? Using SSA we can find the answer.

Optimizations using SSA

1:i11:=1j1:=1
kli:=0

k2 :=¢(k4, 0)

2:j2 :=0(j4, 1)

if k2 <100

O

3:ifj2< 20 4: return j2

\

5:j3 := 1 6: j5 := k2
k3 := k2+1 k5 := k2+1

—
7:j4 = 0(j3, j5)
k4 := ¢(k3,k5)

Optimizations using SSA

1:i11:=1j1:=1
kli:=0

2:j2 :=0(j4, 1)
k2 := ¢(k4, 0)
if k2 <100

O

3:ifj2 < 20

4: return j2

\

5:j3:=1
k3 := k2+1

6:
k5 := k2+1

—

7:i4 = o(j3, k2)
k4 = d(k3,k5)

Optimizations using SSA

1:i11:=1j1:=1
kli:=0

2:j2 :=0(j4, 1)
k2 := ¢(k4, 0)
if k2 <100

O

3:ifj2 < 20

4: return j2

\

5:j3:=1
k3 := k2+1

6:
k5 := k2+1

—

7:j4 = ¢(1, k2)
k4 := ¢(k3,k5)

Optimizations using SSA

1:i11:=1j1:=1
kli:=0

2:j2 :=0(j4, 1)
k2 := ¢(k4, 0)
if k2 <100

O

3:ifj2 < 20

4: return j2

\

5:j3:=1
k3 := k2+1

\

7:i4 = (1)
k4 := ¢p(k3)

Optimizations using SSA

1:i11:=1j1:=1
kli:=0

2:j2:=¢(1, 1)
k2 := ¢(k4, 0)
if k2 <100

O

3:ifj2 < 20

4: return j2

\

5:j3:=1
k3 := k2+1

7.

.k4 = ¢(k3)

Optimizations using SSA

1:i11:=1j1:=1
kli:=0

2.

k2 := ¢(k4, 0)
if k2 <100

O

3:if1<20

4: return 1

\

5.

k3 := k2+1

7.

.k4 = ¢(k3)

Optimizations using SSA

1: | 2: k2 := ¢(k4, 0)
if k2 < 100

N

3: 4: return 1

\

5:k3 :=k2+1

>~

7: k4 = ¢p(k3)

Optimizations using SSA

1: ~—_| 2: k2 := §(k3, 0)
if k2 < 100

N

5: k3 :=k2+1 4: return 1

Optimizations using SSA

* Arrays, Pointers and Memory

* For more complex programs, we need dependencies: how
does statement B depend on statement A?

* Read after write: A defines variable v, then B uses v
* Write after write: A defines v, then B defines v
* Write after read: A uses v, then B defines v

e Control: A controls whether B executes

Optimizations using SSA

* Memory dependence
M[i] :=4
X := M[j]
MIK] :=]

* We cannot tell if j, j, k are all the same value which makes
any optimization difficult

* Similar problems with Control dependence

* SSA does not offer an easy solution to these problems

More on Optimization

Control Flow Analysis Loop Optimizations

Data Flow Analysis Procedure Optimizations

Dependence Analysis Code Scheduling (pipelining)

Alias Analysis Low-level Optimizations

Early Optimizations Interprocedural Analysis

Redundancy Elimination Memory Hierarchy

e Advanced Compiler Design and Implementation
by Steven S. Muchnick

Amdahl’s Law

* Speedupygrs = |
((1 - T|meFractionoptimized) + T'meFractionoptimized/Speedupoptimized)'l

* Optimize the common case, 90/10 rule

* Requires quantitative approach

* Profiling + Benchmarking

* Problem: Compiler writer doesn’t know the application beforehand

Summary

* Optimizations can improve speed, while maintaining correctness
* Many types of local optimizations
e Static Single-Assignment Form (SSA)

* Optimization using SSA Form

