
Code Optimization

CMPT 379: Compilers
Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

1

OPT4: Code Optimization

Code Optimization

• There is no fully optimizing compiler O

• Let’s assume O exists. It takes a program P and produces output
Opt(P) which is the smallest possible

• Imagine a program Q that produces no output and never terminates,
then Opt(Q) could be:
L1: goto L1

• Then to check if a program P never terminates on some inputs, check
if Opt(P(i)) is equal to Opt(Q) = Solves the Halting Problem

• Full Employment Theorem for Compiler Writers, see Rice(1953)

2

Optimizations

• Non-Optimizations

• Correctness of optimizations
• Optimizations must not change the meaning of the program

• Types of optimizations
• Local optimization and peephole optimization
• Global dataflow analysis for optimization
• Static Single Assignment (SSA) Form

• Amdahl’s Law

3

Non-Optimizations

enum { GOOD, BAD };

extern int test_condition();

void check() {
int rc;

rc = test_condition();

if (rc != GOOD) {

exit(rc);
}

}

enum { GOOD, BAD };

extern int test_condition();

void check() {
int rc;

if ((rc = test_condition())) {

exit(rc);

}
}

4

Which version of check runs faster?

Types of Optimizations

• High-level optimizations
• function inlining

• Machine-dependent optimizations
• e.g., peephole optimizations, instruction scheduling

• Local optimizations or Transformations
• within basic block

5

Types of Optimizations

• Global optimizations or Data flow Analysis
• across basic blocks

• within one procedure (intraprocedural)

• whole program (interprocedural)

• pointers (alias analysis)

6

Maintaining Correctness

• What does this program
output?

3
Not:
$ decafcomp byzero.decaf
Divide by zero exception

func main() int {
var x int;
if (false) {

x = 3/(3-3);
} else {

x = 3;
}
print_int(x);

}

7

branch delay
slot (cf. load
delay slot)

Peephole Optimization

• Redundant instruction elimination
• If two instructions perform that same function and are in the same basic

block, remove one

• Redundant loads and stores
load t1 = 3

load t1 = 4

• Remove unreachable code

8

Peephole Optimization

• Flow control optimization
goto L1

L1:
goto L2

• Algebraic simplification
• Reduction in strength

• Use faster instructions whenever possible

• Use of Machine Idioms
• Filling delay slots

9

Constant folding & propagation

• Constant folding
• compute expressions with known values at compile time

• Constant propagation
• if constant assigned to variable, replace uses of variable with constant unless

variable is reassigned

10

Constant folding & propagation

• Copy Propagation

11

a := d + e b := d + e

c := d + e

t := d + e
a := t

t := d + e
b := t

c := t

Transformations

• Structure preserving transformations

• Common subexpression elimination
a := b + c
b := a - d
c := b + c
d := a - d (Þ b)

12

Transformations

• Dead-code elimination (combines copy propagation with
removal of unreachable code)

if (debug) { f(); } /* debug := false (as a constant) */

if (false) { f(); } /* constant folding */

using dead-code elimination, code for f() is removed
x := t3 x := t3

t4 := x becomes t4 := t3

13

Transformations

• Renaming temporary variables
t1 := b+c can be changed to t2 := b+c
replace all instances of t1 with t2

• Interchange of statements
t1 := b+c t2 := x+y
t2 := x+y can be converted to t1 := b+c

(Can be combined with branch delay slots or load delay
slots)

14

Transformations

• Algebraic transformations
d := a + 0 (Þ a)
d := d * 1 (Þ eliminate)

• Reduction of strength
d := a ** 2 (Þ a * a)

15

Code Optimization for SSA Form

Optimizations using SSA

• SSA form contains statements, basic blocks and variables

• Dead-code elimination
• if there is a variable v with no uses and def of v has no

side-effects, delete statement defining v
• if z := f (x, y) then eliminate this stmt if no defs for x,y

17

Optimizations using SSA

• Constant Propagation
• if v := c for some constant c then replace v with c for all

uses of v
• v := f (c1, c2, ..., cn) where all ci are equal to c can be

replaced by v := c
• In practice, all phi functions will be binary: f (c1, c2)

18

Optimizations using SSA

19

1: i1 := 1 j1 := 1
k1 := 0

2: j2 := f(j4, j1)
k2 := f(k4, k1)
if k2 < 100

3: if j2 < 20 4: return j2

5: j3 := i1
k3 := k2+1

6: j5 := k2
k5 := k2+1

7: j4 := f(j3, j5)
k4 := f(k3,k5)

Optimizations using SSA

• Conditional Constant Propagation
• In previous flow graph, is j always equal to 1?
• If j = 1 always, then block 6 will never execute and so j := i

and j := 1 always
• If j > 20 then block 6 will execute, and j := k will be

executed so that eventually j > 20
•Which will happen? Using SSA we can find the answer.

20

Optimizations using SSA

21

1: i1 := 1 j1 := 1
k1 := 0

2: j2 := f(j4, 1)
k2 := f(k4, 0)
if k2 < 100

3: if j2 < 20 4: return j2

5: j3 := 1
k3 := k2+1

6: j5 := k2
k5 := k2+1

7: j4 := f(j3, j5)
k4 := f(k3,k5)

Optimizations using SSA

22

1: i1 := 1 j1 := 1
k1 := 0

2: j2 := f(j4, 1)
k2 := f(k4, 0)
if k2 < 100

3: if j2 < 20 4: return j2

5: j3 := 1
k3 := k2+1

6:
k5 := k2+1

7: j4 := f(j3, k2)
k4 := f(k3,k5)

Optimizations using SSA

23

1: i1 := 1 j1 := 1
k1 := 0

2: j2 := f(j4, 1)
k2 := f(k4, 0)
if k2 < 100

3: if j2 < 20 4: return j2

5: j3 := 1
k3 := k2+1

6:
k5 := k2+1

7: j4 := f(1, k2)
k4 := f(k3,k5)

Optimizations using SSA

24

1: i1 := 1 j1 := 1
k1 := 0

2: j2 := f(j4, 1)
k2 := f(k4, 0)
if k2 < 100

3: if j2 < 20 4: return j2

5: j3 := 1
k3 := k2+1

7: j4 := f(1)
k4 := f(k3)

Optimizations using SSA

25

1: i1 := 1 j1 := 1
k1 := 0

2: j2 := f(1, 1)
k2 := f(k4, 0)
if k2 < 100

3: if j2 < 20 4: return j2

5: j3 := 1
k3 := k2+1

7:
k4 := f(k3)

Optimizations using SSA

26

1: i1 := 1 j1 := 1
k1 := 0

2:
k2 := f(k4, 0)
if k2 < 100

3: if 1 < 20 4: return 1

5:
k3 := k2+1

7:
k4 := f(k3)

Optimizations using SSA

27

1: 2: k2 := f(k4, 0)
if k2 < 100

3: 4: return 1

5: k3 := k2+1

7: k4 := f(k3)

Optimizations using SSA

28

1: 2: k2 := f(k3, 0)
if k2 < 100

4: return 15: k3 := k2+1

Optimizations using SSA

• Arrays, Pointers and Memory
• For more complex programs, we need dependencies: how

does statement B depend on statement A?
• Read after write: A defines variable v, then B uses v
•Write after write: A defines v, then B defines v
•Write after read: A uses v, then B defines v
• Control: A controls whether B executes

29

Optimizations using SSA

•Memory dependence
M[i] := 4
x := M[j]
M[k] := j

•We cannot tell if i, j, k are all the same value which makes
any optimization difficult
• Similar problems with Control dependence
• SSA does not offer an easy solution to these problems

30

More on Optimization

• Control Flow Analysis
• Data Flow Analysis
• Dependence Analysis
• Alias Analysis
• Early Optimizations
• Redundancy Elimination

• Loop Optimizations
• Procedure Optimizations
• Code Scheduling (pipelining)
• Low-level Optimizations
• Interprocedural Analysis
• Memory Hierarchy

31

• Advanced Compiler Design and Implementation
by Steven S. Muchnick

Amdahl’s Law

• Speeduptotal =
((1 - TimeFractionoptimized) + TimeFractionoptimized/Speedupoptimized)-1

• Optimize the common case, 90/10 rule

• Requires quantitative approach
• Profiling + Benchmarking

• Problem: Compiler writer doesn’t know the application beforehand

32

Summary

• Optimizations can improve speed, while maintaining correctness

• Many types of local optimizations

• Static Single-Assignment Form (SSA)

• Optimization using SSA Form

33

