
Spilling in Register Allocation

CMPT 379: Compilers
Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

1

OPT2: Spilling

Register Allocation as Graph Coloring

• What happens if the graph coloring heuristic fails to find a coloring?

• In this case we cannot hold all values in the registers
• Some values should be spilled to memory

2

K-coloring fails

• What if all nodes have k or more neighbors?

• Try to find a 3 coloring of this graph

Remove a

3

a

b

c

d

f

e

Example of 3-coloring

• There is no node such that if we remove it then 3-coloring for

the graph is available

4

b

c

d

f

e

Optimistic Coloring

• If every node in G has more than k neighbors, k-coloring of G might
not be possible

• Pick a node as candidate for spilling, remove it from the graph and
continue k-coloring

5

Optimistic Coloring

• Remove f and continue:
• The ordering: {c,e,d,b,f,a}

6

b

c

d

e

Optimistic Coloring

• Color the nodes {c,e,d,b,f,a}

• Try to assign a color to f

•We hope that among 4 neighbors of f we use less than 3
colors (optimistic coloring)

7

r2 e

f b r3

c r1

d r3

Spilling

• If optimistic coloring fails, we spill f
• Allocate a memory location for f
• Typically in the current stack frame
• Call this address fa

• Before each operation that reads f, insert
f = load fa

• After each operation that writes f, insert
store f, fa

• Spilling is expensive (wrt time) but sometimes necessary.
8

Original Code

9

a = b+c
d = -a

e = d+f

f = 2*e
b = d+e
e = e-1

b = f+c

Code after Spilling f

10

a = b+c
d = -a

f1 = load fa
e = d+f1

f2 = 2*e
store f2, fa

b = d+e
e = e-1

f3 = load fa
b = f3+c

Recompute the Liveness

11

a = b+c
d = -a

f1 = load fa
e = d+f1

f2 = 2*e
store f2, fa

b = d+e
e = e-1

f3 = load fa
b = f3+c

{f, c}

{b}

{b, c, f}

{f, c}

{c, e} {c, d, e, f}

{c, d, f}
{a, c, f}

{b, c, e, f}

Recompute the Liveness

12

a = b+c
d = -a

f1 = load fa
e = d+f1

f2 = 2*e
store f2, fa

b = d+e
e = e-1

f3 = load fa
b = f3+c

{f, c}

{b}

{b, c, f}

{f, c}

{c, e} {c, d, e, f}

{c, d, f}
{a, c, f}

{b, c, e, f}

{c, d, f1}

{c, f2}

{c, f3}

Rebuild the Interference Graph

• New liveness information is almost as before
• Note f has been split into three temporaries

• fi is live only
• Between a fi = load fa and the next instruction

• Between a store fi, fa and the preceding instr.

• Spilling reduces the live range of f
• And thus reduces its interferences

• Which results in fewer RIG neighbors

13

Rebuild the Interference Graph

• Some edges of the spilled nodes are removed

• In our case f still interferes only with c and d

• And the new RIG is 3-colorable

14

a

b

c

d

f1

e

f3

f2

Spilling

• Additional spilling might be required before a coloring is found

15

Example

K=3

remove a

Stack: {}

16

e

f b

c

d

a

Example

K=3

remove c

Stack: {a}

17

e

f b

c

d

Example

K=3

remove b

Stack: {c,a}

18

e

f b

d

Example

K=3

remove e

Stack: {b,c,a}

19

e

f

d

Example

K=3

remove f

Stack: {e,b,c,a}

20

f

d

Example

K=3

remove d

Stack: {f,e,b,c,a}

21

d

Example

K=3

Stack: {d,f,e,b,c,a}

22

Example

K=3

Stack: {f,e,b,c,a}

23

d r1

Example

K=3

Stack: {e,b,c,a}

24

d r1

r2 f

Example

K=3

Stack: {b,c,a}

25

d r1

r2 f

r3 e

Example

K=3

Stack: {c,a}

26

d r1

r2 f

r3 e

b r3

Example

K=3

Stack: {a}

27

d r1

r2 f

r3 e

b r3

c Spilled!

Example

K=3

Stack: {}

28

d r1

r2 f

r3 e

b r3

c Spilled!

a Spilled!

Spilling

• Many different heuristics for picking a node to spill
• Spill temporaries with most conflicts

• Spill temporaries with few definitions and uses

• Avoid spilling in inner loops (heavily visited regions of the code)

• C allows a register keyword to direct the compiler whether a variable
contains a value that is heavily used.

29

