OPT1: Register Allocation

Register Allocation

CMPT 379: Compilers Instructor: Anoop Sarkar anoopsarkar.github.io/compilers-class

Register Allocation

- Intermediate code uses unlimited temporaries
 - Simplifying code generation and optimization
 - Complicates final translation to assembly

Register Allocation

• The problem:

Rewrite the intermediate code to use no more temporary locations than there are machine registers

- Method:
 - Assign multiple temporaries to each register
 - But without changing the program behavior

• Consider the program

a = c + de = a + b

- f = e 1
- Assume a & e dead after use
 - "dead" means it is never used
 - A dead temporary location can be "reused"
- Can allocate a, e and f all to one register (r₁)
 r₁ = r₂ + r₃
 r₁ = r₁ + r₄
 r₁ = r₁ - 1

History

- Register allocation is as old as compilers
 - Register allocation was used in the original FORTRAN compiler in 1950's
 - Very crude algorithm
- A breakthrough came in 1980
 - Register allocation scheme based on graph coloring
 - Relatively simple, global and works well in practice

Principles of Register Allocation

- Temporaries t₁ can t₂ can share the same register if at any point in the program at most one of t₁ or t₂ is live
 - If t_1 and t_2 are live at the same time, they cannot share a register
- We need liveness analysis: which locations are live at the same time?

Live Variables

Compute live variables for each point ٠

f

b

Register Interference Graph

- Construct an undirected graph
 - A node for each temporary
 - An edge between t_1 and t_2 if they are live simultaneously at some point in the program
- This is the *register interference graph* (RIG)
 - Two temporaries can be allocated to the same register if there is no edge connecting them

Register Interference Graph

- a and c cannot be in the same register
- a and d could be in the same register

Register Interference Graph

- Extracts exactly the information we need to characterize legal register allocation
- Gives the global view (i.e., over the entire control flow graph) of the register requirements
- After RIG construction the register allocation algorithm is architecture independent

Graph Coloring

• A coloring of a graph is an assignment of colors to nodes, such that nodes connected by an edge have different colors

• A graph is k-colorable if it has a coloring with k colors

Register Allocation as Graph Coloring

- In our problem, colors = registers
- We need to assign colors (registers) to graph nodes (temporaries)
- Let **k** = number of machine registers
- If the RIG is k-colorable then there is a register assignment that uses no more than k registers

- There is no coloring with less than 4 colors
- There is a 4-coloring of this graph

Control Flow Graph

Register Allocation

Graph Coloring

- How do we compute graph coloring?
- It is not easy :
 - The problem is NP-hard. No efficient algorithms are known
 - Solution: use heuristics
 - A coloring might not exist for a given number of registers
 - Solution: register spilling to memory

Register Allocation as Graph Coloring

- Main idea for solving whether a graph G is *k*-colorable:
- Pick any node *t* with fewer than *k* neighbors
- Remove *n* adjacent edges of node *t* to create a new graph G'
- If G' is k-colorable, then so is G (the original graph)
- Let $c_1, ..., c_n$ be the colors assigned to the neighbors of t in G'
- Since n<k we can pick some color for t that is different from its neighbors

Register Allocation as Graph Coloring

- Heuristic for graph coloring:
 - Ordering nodes (in a stack)
 - 1. Pick a node t with fewer than k neighbors
 - 2. Put *t* on a stack and remove it from the register interference graph (RIG)
 - 3. Repeat until the graph is empty
 - Assigning color to nodes on the stack:
 - 1. Start with the last node added
 - 2. At each step pick a color different from those assigned to already colored neighbors

• Assume k=4

Remove a

stack={}

• Assume k=4

Remove d

stack={a}

• Assume k=4

All nodes now have fewer than 4 neighbors

The graph coloring is guaranteed to succeed

Remove c stack={d,a}

• Assume k=4

Remove b

stack={c,d,a}

• Assume k=4

Remove e

stack={b,c,d,a}

• Assume k=4

Remove f

stack={e,b,c,d,a}

f

• Assume k=4

Empty graph – done with the first part

Now we have the order for assigning colors to nodes, start coloring the nodes (from the top of the stack)

stack={f,e,b,c,d,a}

• Assume k=4

r₁ f

stack={e,b,c,d,a}

• Assume k=4

e must be in a different register from f

stack={b,c,d,a}

• Assume k=4

stack={c,d,a}

• Assume k=4

The ordering insures we can find a color for all nodes

stack={d,a}

• Assume k=4

d can be in the same register as b

stack={a}

• Assume k=4

stack={}

Summary

- Register allocation is a "must have" in compilers, because:
 - Intermediate code uses too many temporaries
 - It makes a big difference in performance
- Register allocation can be reduced to a graph colouring problem where the number or registers equals the number of colours.