[OPT1: Register Allocation]

Register Allocation

CMPT 379: Compilers
Instructor: Anoop Sarkar
anoopsarkar.github.io/compilers-class

Register Allocation

* Intermediate code uses unlimited temporaries
* Simplifying code generation and optimization
* Complicates final translation to assembly

Register Allocation

* The problem:

Rewrite the intermediate code to use no more temporary
locations than there are machine registers

* Method:
e Assign multiple temporaries to each register

e But without changing the program behavior

Example

e Consider the program

e Assume 2 & e dead after use
e "dead" means it is never used

A dead temporary location can
be "reused"

Can allocate 3,
one register (r,)

and f all to

History

* Register allocation is as old as compilers
» Register allocation was used in the original FORTRAN compiler in 1950’s

* Very crude algorithm

* A breakthrough came in 1980
» Register allocation scheme based on graph coloring

 Relatively simple, global and works well in practice

Principles of Register Allocation

* Temporaries t; can t, can share the same reqister if
oft;ort,is
* Ift, and t, are live at the same time, they cannot share a register

* We need liveness analysis: which locations are live at the
same time?

Live Variables

* Compute live variables for each point e C

L—

a =b+c
fafict =g =

(B0 = gaf

Graph

e el ldetd coloring -
because we b =d+e register
redefine it f=2%e _ < fb,ef,c} allocation
e=e-1
{f,c} > {fict=>

b =f+c

b} =~ ;

Register Interference Graph

e Construct an undirected graph
* A node for each temporary

* An edge between t; and t, if they are live simultaneously at some point in
the program

 This is the (RIG)

* Two temporaries can be allocated to the same register if there is no edge
connecting them

Register Interference Graph

d

f b

* For our example

d

and c cannot be in the same register

and d could be in the same register

Register Interference Graph

* Extracts exactly the information we need to characterize legal
register allocation

 Gives the global view (i.e., over the entire control flow graph) of the
register requirements

 After RIG construction the register allocation algorithm is
architecture independent

Graph Coloring

* A coloring of a graph is an assignment of colors to nodes, such that
nodes connected by an edge have different colors

* A graph is k-colorable if it has a coloring with k colors

d

P

Register Allocation as Graph Coloring

* In our problem, colors = registers
* We need to assign colors (registers) to graph nodes (temporaries)
* Let k = number of machine registers

* If the RIG is k-colorable then there is a register assignment that uses
no more than k registers

Example

r
d
* For our example
f br;
r, e CI,
d r3

* There is no coloring with less than 4 colors

* There is a 4-coloring of this graph

Control Flow Graph

L—

a = b+c
d=-a
e = d+f

f=2%e

~. 1

/\bzd-l-e

e=e-1

b =f+c

/\

Register Allocation

L —
Nh=r3+r,
'3 =-r;
rh=r3+nr
r_z*r ry=r3+rn
1_\/[‘2:1?_1
r3=r1+r4

/\

Graph Coloring

* How do we compute graph coloring?

* ltis not easy :
* The problem is NP-hard. No efficient algorithms are known
* Solution: use heuristics
* A coloring might not exist for a given number of registers

* Solution: register spilling to memory

Register Allocation as Graph Coloring

* Main idea for solving whether a graph G is k-colorable:

* Pick any node t with fewer than k neighbors

* Remove n adjacent edges of node t to create a new graph G’
* If G’ is k-colorable, then so is G (the original graph)

* Letcy,...,C, be the colors assigned to the neighbors of t in G’

* Since n<k we can pick some color for t that is different from its
neighbors

Register Allocation as Graph Coloring

 Heuristic for graph coloring:
* Ordering nodes (in a stack)
1. Pick a node t with fewer than k neighbors
2. Put t on astack and remove it from the register interference graph (RIG)
3. Repeat until the graph is empty
* Assigning color to nodes on the stack:

1. Start with the last node added

2. At each step pick a color different from those assigned to already colored
neighbors

Example
* Assume k=4
Remove

stack={}

Example
e Assume k=4

Remove

stack={a}

Example

e Assume k=4

All nodes now have fewer than 4 neighbors

f

Remove

stack={d,a}

Example

e Assume k=4

f
Remove I/.
e

stack={c,d,a}

Example

e Assume k=4

Remove

stack={b,c,d,a}

Example

e Assume k=4

Remove

stack={e,b,c,d,a}

Example

* Assume k=4
Empty graph — done with the first part

Now we have the order for assigning colors to nodes, start coloring the nodes
(from the top of the stack)

stack={f,e,b,c,d,a}

Example

e Assume k=4

stack={e,b,c,d,a}

Example

e Assume k=4

must be in a different register from

stack={b,c,d,a}

r, e

Example

e Assume k=4

stack={c,d,a}

f

r, e

—

br;

Example

e Assume k=4

br;

f
stack={d,a} I; :I
r, e CrI,

Example

e Assume k=4

can be in the same register as

stack={a}

r, e

br;

cry,

Example

e Assume k=4

stack={}

r, e

ar,

or rs

br;

cry,

Summary

* Register allocation is a “must have” in compilers, because:
* Intermediate code uses too many temporaries

* It makes a big difference in performance

* Register allocation can be reduced to a graph colouring problem
where the number or registers equals the number of colours.

