
Register Allocation

CMPT 379: Compilers
Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

1

OPT1: Register Allocation

Register Allocation

• Intermediate code uses unlimited temporaries
• Simplifying code generation and optimization
• Complicates final translation to assembly

2

Register Allocation

• The problem:
Rewrite the intermediate code to use no more temporary
locations than there are machine registers

• Method:
• Assign multiple temporaries to each register
• But without changing the program behavior

3

Example

4

• Consider the program
a = c + d
e = a + b
f = e - 1

• Assume a & e dead after use
• "dead" means it is never used
• A dead temporary location can

be "reused"

• Can allocate a, e and f all to
one register (r1)
r1 = r2 + r3
r1 = r1 + r4
r1 = r1 - 1

History

• Register allocation is as old as compilers
• Register allocation was used in the original FORTRAN compiler in 1950’s

• Very crude algorithm

• A breakthrough came in 1980
• Register allocation scheme based on graph coloring

• Relatively simple, global and works well in practice

5

Principles of Register Allocation

• Temporaries t1 can t2 can share the same register if at any
point in the program at most one of t1 or t2 is live
• If t1 and t2 are live at the same time, they cannot share a register

•We need liveness analysis: which locations are live at the
same time?

6

Live Variables

7

a = b+c
d = -a

e = d+f

f = 2*e
b = d+e
e = e-1

b = f+c

{f,c}

{b}

{b,c,f}

• Compute live variables for each point

{f,c}

{c,e} {d,e,f,c}
{d,f,c}
{a,f,c}

{b,e,f,c}

f is not
needed
because we
redefine it

a

b

c

d

f

e

Graph
coloring =

register
allocation

Register Interference Graph

• Construct an undirected graph
• A node for each temporary

• An edge between t1 and t2 if they are live simultaneously at some point in
the program

• This is the register interference graph (RIG)
• Two temporaries can be allocated to the same register if there is no edge

connecting them

8

Register Interference Graph

• For our example

• a and c cannot be in the same register

• a and d could be in the same register

9

a

b

c

d

f

e

Register Interference Graph

• Extracts exactly the information we need to characterize legal
register allocation

• Gives the global view (i.e., over the entire control flow graph) of the
register requirements

• After RIG construction the register allocation algorithm is
architecture independent

10

Graph Coloring

• A coloring of a graph is an assignment of colors to nodes, such that
nodes connected by an edge have different colors

• A graph is k-colorable if it has a coloring with k colors

11

a

cf

Register Allocation as Graph Coloring

• In our problem, colors = registers

• We need to assign colors (registers) to graph nodes (temporaries)

• Let k = number of machine registers

• If the RIG is k-colorable then there is a register assignment that uses
no more than k registers

12

Example

• For our example

• There is no coloring with less than 4 colors

• There is a 4-coloring of this graph

13

r2
a

b r3

c r4

d r3

r1 f

r2 e

Control Flow Graph

14

a = b+c
d = -a

e = d+f

f = 2*e
b = d+e
e = e-1

b = f+c

Register Allocation

15

r2 = r3 +r4
r3 = -r2

r2 = r3 + r1

r1 = 2* r2
r3 = r3 + r2
r2 = r2 -1

r3 = r1 + r4

Graph Coloring

• How do we compute graph coloring?

• It is not easy :
• The problem is NP-hard. No efficient algorithms are known
• Solution: use heuristics

• A coloring might not exist for a given number of registers
• Solution: register spilling to memory

16

Register Allocation as Graph Coloring

• Main idea for solving whether a graph G is k-colorable:

• Pick any node t with fewer than k neighbors

• Remove n adjacent edges of node t to create a new graph G’

• If G’ is k-colorable, then so is G (the original graph)

• Let c1,…,cn be the colors assigned to the neighbors of t in G’

• Since n<k we can pick some color for t that is different from its
neighbors

17

Register Allocation as Graph Coloring

• Heuristic for graph coloring:
• Ordering nodes (in a stack)

1. Pick a node t with fewer than k neighbors

2. Put t on a stack and remove it from the register interference graph (RIG)

3. Repeat until the graph is empty

• Assigning color to nodes on the stack:

1. Start with the last node added

2. At each step pick a color different from those assigned to already colored
neighbors

18

Example

• Assume k=4

Remove a

stack={}

19

a

b

c

d

f

e

Example

• Assume k=4

Remove d

stack={a}

20

b

c

d

f

e

Example

• Assume k=4
All nodes now have fewer than 4 neighbors

The graph coloring is guaranteed to succeed

Remove c

stack={d,a}

21

b

c

f

e

Example

• Assume k=4

Remove b

stack={c,d,a}

22

bf

e

Example

• Assume k=4

Remove e

stack={b,c,d,a}

23

f

e

Example

• Assume k=4

Remove f

stack={e,b,c,d,a}

24

f

Example

• Assume k=4
Empty graph – done with the first part

Now we have the order for assigning colors to nodes, start coloring the nodes
(from the top of the stack)

stack={f,e,b,c,d,a}

25

Example

• Assume k=4

stack={e,b,c,d,a}

26

r1 f

Example

• Assume k=4
e must be in a different register from f

stack={b,c,d,a}

27

r2 e

r1 f

Example

• Assume k=4

stack={c,d,a}

28

r2 e

r1 f b r3

Example

• Assume k=4
The ordering insures we can find a color for all nodes

stack={d,a}

29

r2 e

r1 f b r3

c r4

Example

• Assume k=4
d can be in the same register as b

stack={a}

30

r2 e

r1 f b r3

c r4

d r3

Example

• Assume k=4

stack={}

31

r2 e

r1 f b r3

c r4

d r3

a r2
or r3

Summary

• Register allocation is a “must have” in compilers, because:
• Intermediate code uses too many temporaries

• It makes a big difference in performance

• Register allocation can be reduced to a graph colouring problem
where the number or registers equals the number of colours.

32

