Register Allocation

CMPT 379: Compilers
Instructor: Anoop Sarkar
anoopsarkar.github.io/compilers-class

Register Allocation

- Intermediate code uses unlimited temporaries
- Simplifying code generation and optimization
- Complicates final translation to assembly

Register Allocation

- The problem:

Rewrite the intermediate code to use no more temporary locations than there are machine registers

- Method:
- Assign multiple temporaries to each register
- But without changing the program behavior

Example

- Consider the program
$a=c+d$
$e=a+b$
$f=e-1$
- Assume a \& e dead after use
- "dead" means it is never used
- A dead temporary location can be "reused"
- Can allocate a, e and fall to one register (r_{1})

$$
\begin{aligned}
& r_{1}=r_{2}+r_{3} \\
& r_{1}=r_{1}+r_{4} \\
& r_{1}=r_{1}-1
\end{aligned}
$$

History

- Register allocation is as old as compilers
- Register allocation was used in the original FORTRAN compiler in 1950's
- Very crude algorithm
- A breakthrough came in 1980
- Register allocation scheme based on graph coloring
- Relatively simple, global and works well in practice

Principles of Register Allocation

- Temporaries t_{1} can t_{2} can share the same register if at any point in the program at most one of t_{1} or t_{2} is live
- If t_{1} and t_{2} are live at the same time, they cannot share a register
- We need liveness analysis: which locations are live at the same time?

Live Variables

- Compute live variables for each point

Register Interference Graph

- Construct an undirected graph
- A node for each temporary
- An edge between t_{1} and t_{2} if they are live simultaneously at some point in the program
- This is the register interference graph (RIG)
- Two temporaries can be allocated to the same register if there is no edge connecting them

Register Interference Graph

- For our example

- a and c cannot be in the same register
- a and d could be in the same register

Register Interference Graph

- Extracts exactly the information we need to characterize legal register allocation
- Gives the global view (i.e., over the entire control flow graph) of the register requirements
- After RIG construction the register allocation algorithm is architecture independent

Graph Coloring

- A coloring of a graph is an assignment of colors to nodes, such that nodes connected by an edge have different colors
- A graph is k -colorable if it has a coloring with k colors

Register Allocation as Graph Coloring

- In our problem, colors = registers
- We need to assign colors (registers) to graph nodes (temporaries)
- Let $\mathrm{k}=$ number of machine registers
- If the RIG is k-colorable then there is a register assignment that uses no more than k registers

Example

- For our example

- There is no coloring with less than 4 colors
- There is a 4-coloring of this graph

Control Flow Graph

Register Allocation

Graph Coloring

- How do we compute graph coloring?
- It is not easy :
- The problem is NP-hard. No efficient algorithms are known
- Solution: use heuristics
- A coloring might not exist for a given number of registers
- Solution: register spilling to memory

Register Allocation as Graph Coloring

- Main idea for solving whether a graph G is k-colorable:
- Pick any node t with fewer than k neighbors
- Remove n adjacent edges of node t to create a new graph G^{\prime}
- If G^{\prime} is k-colorable, then so is G (the original graph)
- Let $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}$ be the colors assigned to the neighbors of t in G^{\prime}
- Since $n<k$ we can pick some color for t that is different from its neighbors

Register Allocation as Graph Coloring

- Heuristic for graph coloring:
- Ordering nodes (in a stack)

1. Pick a node t with fewer than k neighbors
2. Put t on a stack and remove it from the register interference graph (RIG)
3. Repeat until the graph is empty

- Assigning color to nodes on the stack:

1. Start with the last node added
2. At each step pick a color different from those assigned to already colored neighbors

Example

- Assume k=4

Remove a
stack=\{\}

Example

- Assume k=4

Remove d
stack $=\{a\}$

Example

- Assume k=4

All nodes now have fewer than 4 neighbors
The graph coloring is guaranteed to succeed

Remove c

Example

- Assume k=4

Remove b
stack $=\{c, d, a\}$

Example

- Assume k=4

Remove e
stack $=\{b, c, d, a\}$

Example

- Assume k=4

Remove f
stack $=\{e, b, c, d, a\}$

Example

- Assume k=4

Empty graph - done with the first part
Now we have the order for assigning colors to nodes, start coloring the nodes (from the top of the stack)
stack $=\{f, e, b, c, d, a\}$

Example

- Assume k=4
stack $=\{e, b, c, d, a\}$

Example

- Assume k=4
e must be in a different register from f

$$
\text { stack }=\{b, c, d, a\}
$$

Example

- Assume k=4

stack $=\{c, d, a\}$

Example

- Assume k=4

The ordering insures we can find a color for all nodes
stack $=\{\mathrm{d}, \mathrm{a}\}$

Example

- Assume k=4
d can be in the same register as b
stack $=\{a\}$

Example

- Assume k=4
stack=\{\}

Summary

- Register allocation is a "must have" in compilers, because:
- Intermediate code uses too many temporaries
- It makes a big difference in performance
- Register allocation can be reduced to a graph colouring problem where the number or registers equals the number of colours.

