
LR Parsing

CMPT 379: Compilers
Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

LR5: Precedence and Associativity

S/R & ambiguous grammars

• Lx(k) Grammar vs. Language
• Grammar is Lx(k) if it can be parsed by Lx(k) method – according to criteria

that is specific to the method.

• A Lx(k) grammar may or may not exist for a language.

• Even if a given grammar is not LR(k), shift/reduce parser can
sometimes handle them by accounting for ambiguities
• Example: ‘dangling’ else

• Preferring shift to reduce means matching inner ‘if’

2

Dangling ‘else’

1. S ® if E then S

2. S ® if E then S else S

• Viable prefix “if E then if E then S”
• Then read else

• Shift “else” (means eventually reduce using rule 2)

• Reduce (reduce using rule 1)

• Dangling else as written above is ambiguous

• Prefer shift over reduce resolves the ambiguity, but there’s no LR(k) grammar

3

Precedence & Associativity

• Consider

4

E ® E - E | E * E | id

id - id * id

E - E• *

E

E

E

E

E

E

E

E

E
Reduce

id - id * id

E - E• *

Shift

id - id - id

E - E• -

Reduce

Precedence Relations

• Let A ® w be a rule in the grammar

• And b is a terminal

• In some state q of the LR(1) parser there is a shift-reduce conflict:
• either reduce with A ® w or shift on b

• Write down a rule, either:
A ® w, < b or A ® w, > b

5

Precedence Relations

• A ® w, < b means rule has less precedence and so we shift if we see
b in the lookahead
• A ® w, > b means rule has higher precedence and so we reduce if we

see b in the lookahead
• If there are multiple terminals with shift-reduce conflicts, then we list

them all:
A ® w, > b, < c, > d

6

Precedence Relations

• Consider the grammar
E ® E + E | E * E | (E) | a

• Assume left-association so that E+E+E is interpreted as (E+E)+E
• Assume multiplication has higher precedence than addition
• Then we can write precedence rules/relns:

E ® E + E, > +, < *
E ® E * E, > +, > *

7

Precedence & Associativity

8

2:E ® E * E •
1:E ® E • + E
2:E ® E • * E

E
+

*

1:E ® E + E •
1:E ® E • + E
2:E ® E • * E

E
+

*

+

10:

7: 7

10

*

Shift

R2 R2

R1

E ® E + E, > +, < *
E ® E * E, > +, > *

Implemented in yacc/bison
using ordered list of %left

or %right declarations

Parsing - Summary

• Top-down vs. bottom-up

• Lookahead: FIRST and FOLLOW sets

• LL(1) – Parsing: O(n) time complexity
• recursive-descent and table-driven predictive parsing

• LR(k) – Parsing : O(n) time complexity
• LR(0), SLR(1), LR(1), LALR(1)

• Resolving shift/reduce conflicts
• using precedence, associativity

9

