[LRS: Precedence and Associativity]

LR Parsing

CMPT 379: Compilers
Instructor: Anoop Sarkar
anoopsarkar.github.io/compilers-class



S/R & ambiguous grammars

 Lx(k) Grammar vs. Language

* Grammar is Lx(k) if it can be parsed by Lx(k) method — according to criteria
that is specific to the method.

* A Lx(k) grammar may or may not exist for a language.
* Even if a given grammar is not LR(k), shift/reduce parser can
sometimes handle them by accounting for ambiguities
* Example: ‘dangling’ else

* Preferring shift to reduce means matching inner ‘if’



Dangling ‘else’

1. S —> if EthenS
2. S —> ifEthenSelse S
* Viable prefix “if E then if E then S”

e Then read else

Shift “else” (means eventually reduce using rule 2)

Reduce (reduce using rule 1)

Dangling else as written above is ambiguous

Prefer shift over reduce resolves the ambiguity, but there’s no LR(k) grammar



Precedence & Associativity

* Consider ELSE-EIE*Elid

A A

E-E«* E E-E.* E E - Ee. -

id - 1d * 1d id - 1d * 1d id -1d - 1d



Precedence Relations

* Let A—> wbe aruleinthe grammar

* And b is a terminal
* In some state g of the LR(1) parser there is a shift-reduce conflict:
 either reduce with A — wor shifton b

* Write down a rule, either:

A—>w,<borA—>w,>b



Precedence Relations

* A— w, < b means rule has less precedence and so we shift if we see
b in the lookahead

* A— w, > b means rule has higher precedence and so we reduce if we
see b in the lookahead

* If there are multiple terminals with shift-reduce conflicts, then we list
them all:

A—>w,>b <c >d



Precedence Relations

* Consider the grammar

E>E+E|E*E|(E)]|a
» Assume left-association so that E+E+E is interpreted as (E+E)+E
* Assume multiplication has higher precedence than addition

* Then we can write precedence rules/relns:
E—>E+E >+ <*
E>E*E >+ >*



Implemented in yacc/bison

Precedence & Associativity using ordered list of %1eft

or %right declarations

10:
. 9 °
' E E*E.>+.>%
— S 1'E—>Ee+E - ’ ’

2E—>EBe*E —X

N 7 | R1 | Shift
E 1:E—>E+Eo/

— ILE > Ee+E
2E>Ee*E[—%__ 10 | R2 | R2




Parsing - Summary

* Top-down vs. bottom-up
* Lookahead: FIRST and FOLLOW sets
e LL(1) — Parsing: O(n) time complexity
* recursive-descent and table-driven predictive parsing
e LR(k) — Parsing : O(n) time complexity
e LR(0), SLR(1), LR(1), LALR(1)

* Resolving shift/reduce conflicts

* using precedence, associativity



