
LR Parsing

CMPT 379: Compilers
Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

LR1: Shift-Reduce Parsing

Top-Down vs. Bottom Up

2

S ® A B
A ® c | e
B ® cbB | ca

Input String: ccbca

Top-Down/leftmost Bottom-Up/rightmost

S Þ AB
Þ cB
Þ ccbB
Þ ccbca

S®AB
A®c
B®cbB
B®ca

ccbca Ü Acbca
Ü AcbB
Ü AB
Ü S

A®c
B®ca
B®cbB
S®AB

Grammar:

Bottom-Up parsing

• Bottom-up parsing reduces a string to the start symbol by inverting
the derivation

E ® T + E
E ® T
T ® id
T ® id * T
T ® (E)

id * id + id
id * T + id
T + id
T + T
T + E
E

T ® id
T ® id * T
T ® id
E ® T
E ® T + E

This is a rightmost derivation!
3

Bottom-up parse tree construction

• A shift-reduce parser traces a rightmost derivation in reverse

id * id + id
id * T + id
T + id
T + T
T + E
E

E

E

*id +id id

T T

T

Parse tree

E ® T + E
E ® T
T ® id
T ® id * T
T ® (E)

4

Q: Write down the right
sequence of shift-reduce
actions and draw the
parse tree for input
id*(id*id)

Notation

• Split string into two substrings: α●β
• where α ∈ N ∪ T ∗ and β ∈ T ∗

• Right sub-string is not examined yet; has only terminals

• Left sub-string has terminals and non-terminals

• The dividing point is marked by a ●
● is not a part of the string

• Initially, all input is unexamined ● x1 x2 …xn

5

Shift-Reduce Parsing

• Shift-reduce parsing uses only two kinds of actions:
• Shift: Move ● one place to the right

• Shift a terminal to the left string

ABC ● xyz Þ ABCx ● yz

• Reduce: Apply a CFG rule to the string left of the ●
• If A ® xy is a production, then reduce

Cbxy ● ijk Þ CbA ● ijk

6

Shift-Reduce Parsing
● id * id + id
id ● * id + id
id * ● id + id
id * id ● + id
id * T ● + id
T ● + id
T + ● id
T + id ●
T + T ●
T + E ●
E ●

Shift
Shift
Shift
Reduce T ® id
Reduce T ® id * T
Shift
Shift
Reduce T ® id
Reduce E ® T
Reduce E ® T + E

7

E ® T + E
E ® T
T ® id
T ® id * T
T ® (E)

Shift-Reduce Parsing

E

E

*id +id id

T T

T

● id * id + id
id ● * id + id
id * ● id + id
id * id ● + id
id * T ● + id
T ● + id
T + ● id
T + id ●
T + T ●
T + E ●
E ●

8

E ® T + E
E ® T
T ® id
T ® id * T
T ® (E)

Stack

• Left part of the string is implemented by a stack
• Top of the stack is left of the ●

• Shift pushes a terminal on the stack

• Reduce
• Pops 0 or more symbols off of the stack (rhs of one rule from the CFG)

• Pushes a non-terminal on the stack (lhs of one rule from the CFG)

9

Conflicts

• In a given state, more than one action (shift/reduce) may lead to
different valid parse

• If it is legal to either shift or reduce: shift-reduce conflict
• Can be fixed (precedence and associativity declaration)

• If it is legal to reduce by two different rules: reduce-reduce conflict
• There is ambiguity in the grammar

• Might be fixed by additional lookahead

10

When to shift/reduce?

• Consider step id ● * id + id

• Shift action: id *● id +id

• Reduce action: reduce by T®id giving T●*id +id

• It causes fatal error:
• No way to reduce to the start symbol E

• Reduce is possible, but it is not a valid action

E ® T + E

E ® T

T ® id

T ® id * T

T ® (E)

11

Q: For the same input
id*id+id find another
shift/reduce choice in the
derivation where a shift over
reduce leads to id*E which
cannot be reduced further.

Viable Prefix and Handle

• Intuition: reduce only if we can eventually reach the start symbol

• Assume a rightmost derivation
• SÞ * 𝜶X𝜷Þ 𝜶w𝜷

• Then 𝜶w	is a viable prefix of 𝜶w𝜷
• A	handle	w	is	valid	if	we	can	reduce w	to X
• We	only	reduce	a	handle

• A handle always appears on top of the stack, never inside

reduction

12

Bottom-up Shift-Reduce Parsing Algorithms

• LR(k) parsing:
• L: scan input Left-to-right
• R: produce Rightmost derivation
• k: tokens of lookahead (k=1 is sufficient)

• LR(0): zero tokens of lookahead

• SLR: Simple LR, similar to LR(0), but uses Follow sets

• LALR(k)

• These algorithms work with left- or right-recursive grammars

13

Recognizing a Viable Prefix

• LR parsing algorithms are based on recognizing viable prefixes

• We can identify viable prefixes only for a subset of CFGs

• Adding lookahead helps: (0) or (1) or (k) symbols of lookahead

• For this subset of CFGs, LR parsing is a deterministic linear-time
algorithm.

14

All CFGs

Unambiguous CFGs

LR(k) CFGs

LALR(k) CFGs

SLR(k) CFGs

Hierarchy of grammars

15

LR(0) CFGs

