[LEX6: NFA to DFA]

Lexical Analysis

CMPT 379: Compilers
Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

Building a Lexical Analyzer

e Token = Pattern
e Pattern = Regular Expression

e Regular Expression = NFA
== ¢ NFA = DFA

e DFA = Table-driven implementation
of DFA

16-06-22

e-closure

e-closure(s)= all states reached by e-closure(3) = 134,60}
following only e-transitions e-closure(7) = {7,8,9,3,4,6}

16.06.22 ((0I1)*00)I0 3

e-Closure (T: set of states)

push all states in T onto stack
initialize e-closure(T)to T
while stack is not empty do begin
pop t off stack
for each state u with u € move(t, €) do
if u € e-closure(T) do begin
add u to e-closure(T)
push u onto stack
end
end

16-06-22

Simulating NFAs

e An NFA may be in many states at any time

1 ___ state input
(A 0 0 {A} J00
&0 {A} 100
. —7{AB} 109

e How many different states? {A.B,C} 100,

ISI=N No. of states

Isl <N possible states in

each step
16-06-22 5

2TV -1
Non-empty subsets

NFA to DFA Conversion

NFA DFA
e states S XcS
e start d, e-closure(q,)
e final FcS

e transition S(xa)=V

16-06-22

NFA to DFA Conversion

NFA DFA
e states S XeS
o start 9o e-closure(q,)
e final FcS IX|XnF # ¢}
e transition Sxa)=¥ .
{A} N00

1
(2N 0 0 {A} 100
@ B © {AB) fop

16-06-22 O

{AB,C}100, ~

NFA to DFA Conversion

NFA DFA
e states S XcS
e start d, e-closure(q,)
e final FcS {X|XnF # g}

e transition Sxa)=Y SXa)= UreXTiEs(xa)

e-closure(d(X,a))
DFAedge(X,a)=¢

a €

16-06-22

DFA construction

Dstates = {}, Dtrans =[]

add e-closure(q,) to Dstates unmarked
while 3 unmarked T € Dstates do

mark T; DFAedge (7,c)=¢

for each symbol cdo —closure(UteTT#d(¢,c
U := DFAedge(T,c);)
if U & Dstates then

add U to Dstates unmarked
Dtrans|[T, c]:= U,

16-06-22 9

NFA to DFA

(.2 e-closure(q,)

12]

(¢2]

0] 0]
@

DFAedge(e-closure(q,), 0)

16-06-22 12

16-06-22 13

DFAedge(e-closure(q,), 1)

16-06-22 14

Minimization of DFAs

Minimization of DFAs

16-06-22

19

NFA to DFA Conversion

e Conversion method closely follows the
NFA simulation algorithm

* Instead of simulating, we can collect
those NFA states that behave identically
on the same input

e Group this set of states to form one state
in the DFA

16-06-22 20

NFA to DFA

states[0] = e-closure({q,})
p=j=0
while j < p do
for each symbol ¢ €)'T# do
e = DFAedge(states|j], ¢)
if e = states[i] for some i< p
then Dtrans[j,c]=1
else p=p+l
states[p] = e
Dtrans[j,c] =p
1=3+1

16-06-22

21

