LEX6: NFA to DFA

Lexical Analysis

CMPT 379: Compilers Instructor: Anoop Sarkar anoopsarkar.github.io/compilers-class

Building a Lexical Analyzer

- Token \Rightarrow Pattern
- Pattern \Rightarrow Regular Expression
- Regular Expression \Rightarrow NFA
- NFA \Rightarrow DFA
- DFA \Rightarrow Table-driven implementation of DFA

ε-closure

ε-closure $(s)=$ all states reached by following only ε-transitions

$$
\begin{aligned}
& \varepsilon \text {-closure }(3)=\{3,4,6\} \\
& \varepsilon \text {-closure }(7)=\{7,8,9,3,4,6\}
\end{aligned}
$$

ε-Closure (T: set of states)

push all states in T onto stack initialize ε-closure (T) to T while stack is not empty do begin pop t off stack
for each state u with $u \in \operatorname{move}(t, \varepsilon)$ do if $u \notin \varepsilon$-closure (T) do begin add u to ε-closure(T) push u onto stack end
end

Simulating NFAs

- An NFA may be in many states at any time

- How many different states? $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\} 100_{\wedge}$

$$
\begin{array}{lll}
|\mathrm{S}|=\mathrm{N} & \text { No. of states } & \mathbf{2 ~} \boldsymbol{N} \boldsymbol{N}-\mathbf{1} \\
|\mathrm{s}| \leq \mathrm{N}
\end{array} \begin{aligned}
& \text { possible states in } \\
& \text { each step }
\end{aligned} \quad \begin{aligned}
& \text { Non-empty subsets }
\end{aligned}
$$

NFA to DFA Conversion

NFA DFA

- states
- start
- final
- transition

NFA to DFA Conversion

NFA
 DFA

- states
- start
- final
- transition

16-06-22

S
q.
$\mathrm{F} \subseteq \mathrm{S}$
$\delta(x, a)=Y$

NFA to DFA Conversion

NFA

- states
- start
- final
- transition

$$
\delta(x, a)=Y
$$

$$
\boldsymbol{\delta}(\boldsymbol{X}, \boldsymbol{a})=U x \in X \uparrow^{\uparrow} \delta(x, a)
$$

ε-closure $(\boldsymbol{\delta}(\boldsymbol{X}, \boldsymbol{a}))$

DFAedge $(\mathbf{X}, \mathrm{a})=\varepsilon$

- closure ($\cup x \in X \uparrow$ 褙 $\delta(x, a)$)

DFA construction

Dstates $=\{ \}$, Dtrans $=[]$
add ε-closure $\left(\mathrm{q}_{0}\right)$ to Dstates unmarked while \exists unmarked $T \in$ Dstates do mark T;
for each symbol c do U := DFAedge(T, c);

DFAedge $(\boldsymbol{T}, c)=\varepsilon$

if $U \notin$ Dstates then
add U to Dstates unmarked
Dtrans $[\mathrm{T}, \mathrm{c}]:=\mathrm{U}$;

NFA to DFA

16-06-22

ε-closure $\left(\mathrm{q}_{\mathrm{o}}\right)$

DFAedge(ε-closure $\left(\mathrm{q}_{\mathrm{o}}\right), 0$)

DFAedge(ε-closure $\left.\left(\mathrm{q}_{\mathrm{o}}\right), \mathrm{o}\right)$

Minimization of DFAs

Minimization of DFAs

NFA to DFA Conversion

- Conversion method closely follows the NFA simulation algorithm
- Instead of simulating, we can collect those NFA states that behave identically on the same input
- Group this set of states to form one state in the DFA

NFA to DFA

```
states[0] = &-closure({qqu}}
p = j = 0
while j \leq p do
    for each symbol c \in \T####
    e = DFAedge(states[j], c)
    if e = states[i] for some i\leqp
    then Dtrans[j, c] = i
    else p=p+1
    states[p] = e
    Dtrans[j, c] = p
    j= j+1
```

