LEX6: NFA to DFA

Lexical Analysis

CMPT 379: Compilers Instructor: Anoop Sarkar anoopsarkar.github.io/compilers-class

Building a Lexical Analyzer

- Token \Rightarrow Pattern
- Pattern \Rightarrow Regular Expression
- Regular Expression \Rightarrow NFA
- \rightarrow NFA \Rightarrow DFA
 - DFA ⇒ Table-driven implementation of DFA

ε-closure

ε-Closure (T: set of states)

push all states in T onto stack initialize ε -closure(T) to T while stack is not empty do begin pop t off stack for each state u with $u \in move(t, \varepsilon)$ do if $u \notin \varepsilon$ -closure(T) do begin add u to ε -closure(T) push u onto stack end

end

Simulating NFAs

• An NFA may be in many states at any time

$$\begin{aligned} |S|=N & No. \text{ of states} \\ |s| \le N & \text{possible states in} \\ \text{ each step} \end{aligned}$$

2↑N −1 Non-empty subsets

16-06-22

NFA to DFA Conversion

- NFADFA• statesS $X \subseteq S$ start q_0 ϵ -closure(q_0)• final $F \subseteq S$
- transition

 $\delta(x,a) = Y$

NFA to DFA Conversion

NFA DFA S $X \subseteq S$ states ϵ -closure(q_0) \mathbf{q}_{0} • start • final $\{X \mid X \cap F \neq \emptyset\}$ $F \subseteq S$ transition $\delta(x,a) = Y$ state input {A} 100 100 $\{A\}$ 0 0 B $\{A,B\}$ 100 16-06-22 ()7 ${A,B,C}$

NFA to DFA Conversion NFA DFA S $X \subseteq S$ states ϵ -closure(q_0) \mathbf{q}_{0} • start final $\{X \mid X \cap F \neq \emptyset\}$ $F \subset S$ transition $\delta(X,a) = Ux \in X \uparrow \otimes \delta(x,a)$ $\delta(x,a) = Y$ a ϵ -closure($\delta(X, a)$) a 8 $DFAedge(X,a) = \varepsilon$ a $-closure(Ux \in X \uparrow \otimes \delta(x,a))$ 16-06-22

8

DFA construction

```
Dstates = {}, Dtrans = []
add \varepsilon-closure(q_0) to Dstates unmarked
while \exists unmarked \top \in D states do
     mark T;
                                          DFAedge(T, c) = \varepsilon
     for each symbol c do
                                           -closure(Ut \in T^{\uparrow} \otimes \delta(t,c))
         U := DFAedge(T,c);
         if U \notin Dstates then
            add U to Dstates unmarked
         Dtrans[T, c] := U;
```


 ϵ -closure(q_o)

DFAedge(ϵ -closure(q_o), 0)

DFAedge(ϵ -closure(q_o), 0)

Minimization of DFAs 0 0 [3, 4, 5, 8, 9, 10, 6, [1, 2, 3, 4, 6, 9, 1 11, 14 12] ()0 1 [3, 4, 5, 6, 8, [3, 4, 6, 7, 8, 9] 9, 10] 1 16-06-22 17

16-06-22

NFA to DFA Conversion

- Conversion method closely follows the NFA simulation algorithm
- Instead of simulating, we can collect those NFA states that behave identically on the same input
- Group this set of states to form one state in the DFA

NFA to DFA

```
states[0] = \epsilon-closure({q<sub>0</sub>})
p = j = 0
while j \le p do
        for each symbol c \in \Sigma \hat{i} do
                 e = DFAedge(states[j], c)
                 if e = states[i] for some i \le p
                 then Dtrans[j, c] = i
                 else p = p+1
                          states[p] = e
                          Dtrans[j, c] = p
        j = j + 1
```