
Lexical	Analysis	

CMPT	379:	Compilers	
Instructor:	Anoop	Sarkar	

anoopsarkar.github.io/compilers-class	

LEX6:	NFA	to	DFA	

16-06-22	 2	

Building	a	Lexical	Analyzer	

• Token		⇒	Pattern	
• Pattern	⇒	Regular	Expression	
• Regular	Expression		⇒	NFA	
• NFA	⇒	DFA		
• DFA	⇒	Table-driven	implementation	
of	DFA	

9 8
7 5

4
3

16-06-22 3

6

4 5

ε

0

7 1
3 8

ε

ε

ε

ε

9 ε 2 ε

ε

10 11 0 0

12 13 0

1

14
ε

ε

ε

ε

((0|1)*00)|0

ε-closure	
ε-closure(s)= all states reached by
following only ε-transitions

ε-closure(3) = {3,4,6}
ε-closure(7) = {7,8,9,3,4,6}

16-06-22	 4	

ε-Closure	(T:	set	of	states)	

			push	all	states	in	T	onto	stack	
initialize	ε-closure(T)	to	T	
while	stack	is	not	empty	do	begin	

	pop	t	off	stack	
	for	each	state	u	with	u	∈	move(t,	ε)	do	
						if	u	∉	ε-closure(T)	do	begin	
										add	u	to	ε-closure(T)	
										push	u	onto	stack	
						end	

end	

16-06-22	 5	

Simulating	NFAs	

• An	NFA		may	be	in	many	states	at	any	time	

• How	many	different	states?	

A B C 0 01

0
100{A}

{A} 100
state input

100{A,B}
100{A,B,C}

|S|=N No. of states
|s|

​𝟐↑𝑵  −𝟏
Non-empty subsetspossible states in

each step

s

≤ N

16-06-22	 6	

NFA	to	DFA	Conversion	

• states		
• start	
• final	
• transition	

NFA	
S	
q0	

F ⊆ S
𝜹(𝒙,𝒂)= 𝒀

DFA	
					X	⊆	S	
ε-closure(q0)	

ε
ε

q0

16-06-22	 7	

NFA	to	DFA	Conversion	

• states		
• start	
• final	
• transition	

NFA	
S	
q0	

F ⊆ S

DFA	
					X	⊆	S	
ε-closure(q0)	

{X	|	X∩F		≠		ø}	

A B C 0 01

0

100{A}
{A} 100
state input

100{A,B}
100{A,B,C}

𝜹(𝒙,𝒂)= 𝒀

16-06-22	 8	

NFA	to	DFA	Conversion	

• states		
• start	
• final	
• transition	

NFA	
S	
q0	

F ⊆ S

DFA	
					X	⊆	S	
ε-closure(q0)	

{X	|	X∩F		≠		ø}	

𝜹(𝑿,𝒂)=	

	ε-closure(𝜹(𝑿,𝒂))	

 ⋃𝑥∈𝑋↑▒𝛿(𝑥,𝑎) 

ε
X

a

a

a

DFAedge(X,a)=ε
−closure(⋃𝑥∈𝑋↑▒𝛿(𝑥,𝑎) )	

𝜹(𝒙,𝒂)= 𝒀

16-06-22	 9	

DFA	construction	

				Dstates	=	{},	Dtrans	=	[]				
				add	ε-closure(q0)	to	Dstates	unmarked	

while	∃	unmarked	T	∈	Dstates	do	
	mark	T;	
	for	each	symbol	c	do	

	 							U	:=	DFAedge(T,c);	
							if	U	∉	Dstates	then	
											add	U	to	Dstates	unmarked	
							Dtrans[T,	c]	:=	U;	

	

DFAedge(𝑻,𝒄)=ε
−closure(⋃𝑡∈𝑇↑▒𝛿(𝑡,𝑐) 
)	

16-06-22	 10	

NFA	to	DFA	

4 5
0

6 7
1

3 8

ε

ε

ε

ε

9
ε

2
ε

ε

10 11
0 0

12 13
0

1

14
ε

ε

ε

ε

ε

16-06-22	 11	

ε-closure(q0)	

4 5
0

6 7
1

3 8

ε

ε

ε

ε

9
ε

2
ε

ε

10 11
0 0

12 13
0

1

14
ε

ε

ε

ε

ε

[1, 2,
3, 4, 6, 9,

12]

16-06-22	 12	

DFAedge(ε-closure(q0),	0)	

4 5
0

6 7
1

3 8

ε

ε

ε

ε

9
ε

2
ε

ε

10 11
0 0

12 13
0

1

14
ε

ε

ε

ε

ε

[1, 2,
3, 4, 6, 9,

12]

16-06-22	 13	

DFAedge(ε-closure(q0),	0)	

4 5
0

6 7
1

3 8

ε

ε

ε

ε

9
ε

2
ε

ε

10 11
0 0

12 13
0

1

14
ε

ε

ε

ε

ε

[1, 2,
3, 4, 6, 9,

12]
0 [3,4,5,6,

8,9,10,
13,14]

16-06-22	 14	

4 5
0

6 7
1

3 8

ε

ε

ε

ε

9
ε

2
ε

ε

10 11
0 0

12 13
0

1

14
ε

ε

ε

ε

ε

[1, 2,
3, 4, 6, 9,

12]
0 [3,4,5,6,

8,9,10,
13,14]

[3,4,6,
7,8,9]

1

DFAedge(ε-closure(q0),	1)	

16-06-22	 15	

DFAedge([3,4,5,6…,14],	0)	

4 5
0

6 7
1

3 8

ε

ε

ε

ε

9
ε

2
ε

ε

10 11
0 0

12 13
0

1

14
ε

ε

ε

ε

ε

[1, 2,
3, 4, 6, 9,

12]
0 [3,4,5,6,

8,9,10,
13,14]

[3,4,6,
7,8,9]

1

[3,4,5,6,
8,9,11,10

14]

0

16-06-22	 16	

DFA	for	((0|1)*00)|0	

[1, 2,
3, 4, 6, 9,

12]

[3, 4, 5,
6, 8, 9, 10,

13, 14]

[3, 4, 6,
7, 8, 9]

0

1

1

[3, 4, 5,
6, 8, 9, 10,

11, 14]

0

[3, 4,
5, 6, 8,
9, 10]

0 0

1 1

1

0

16-06-22	 17	

Minimization	of	DFAs	

[1, 2,
3, 4, 6, 9,

12]

[3, 4, 6,
7, 8, 9]

0

1

[3, 4, 5,
6, 8, 9, 10,

11, 14]

[3, 4,
5, 6, 8,
9, 10]

0 0

1 1

1

0

16-06-22	 18	

Minimization	of	DFAs	

[3, 4, 6,
7, 8, 9]

[3, 4, 5,
6, 8, 9, 10,

11, 14]

[3, 4,
5, 6, 8,
9, 10]

0 0

1 1

1

0
0 1

1 0

1

0

16-06-22	 19	

16-06-22	 20	

NFA	to	DFA	Conversion	

• Conversion	method	closely	follows	the	
NFA	simulation	algorithm	

• Instead	of	simulating,	we	can	collect	
those	NFA	states	that	behave	identically	
on	the	same	input	

• Group	this	set	of	states	to	form	one	state	
in	the	DFA	

16-06-22 21

NFA	to	DFA	
states[0] = ε-closure({q0})
p = j = 0
while j ≤ p do

for each symbol c ∈∑↑▒  do
e = DFAedge(states[j], c)
if e = states[i] for some i ≤ p
then Dtrans[j, c] = i
else p = p+1

states[p] = e
Dtrans[j, c] = p

j = j + 1

