
Lexical Analysis

CMPT 379: Compilers
Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

LEX5: Regexps to NFA

Building a Lexical Analyzer

• Token ⇒ Pattern

• Pattern ⇒ Regular Expression

• Regular Expression ⇒ NFA

• NFA ⇒ DFA

• DFA ⇒ Table-driven implementation of DFA

2

Thompson’s construction

• Converts regexps to equivalent NFA

• Six simple rules
• Empty language

• Symbols (Σ)

• Empty String (ε)

• Alternation (r1 or r2)

• Concatenation (r1 followed by r2)

• Repetition (r1*)

3

Used by Ken
Thompson for
pattern-based
search in text
editor QED (1968)

Thompson Rule 0

• For the empty language φ
• (optionally include a sinkhole state)

4

Σ
Σ

Thompson Rule 1

• For each symbol x of the alphabet, there is a NFA that accepts it

5

x

Thompson Rule 2

• There is an NFA that accepts only ε

6

ε

Thompson Rule 3

• Given 2 NFAs r1,r2, there is a NFA that accepts r1|r2

7

r1

r2

Thompson Rule 3

• Given 2 NFAs r1,r2, there is a NFA that accepts r1|r2

8

ε r1
ε

ε r2

ε

Thompson Rule 4

• Given 2 NFAs r1,r2, there is a NFA that accepts r1r2

9

r1 r2

Thompson Rule 4

• Given 2 NFAs r1,r2, there is a NFA that accepts r1r2

10

ε
r1 r2

Thompson Rule 4

• Given 2 NFAs r1,r2, there is a NFA that accepts r1r2

11

ε
r1 r2

Thompson Rule 5

• Given an NFA for r, there is an NFA that accepts r*

12

r

Thompson Rule 5

• Given an NFA for r, there is an NFA that accepts r*

13

ε ε

ε

ε

r

Example

• Set of all binary strings that are divisible by four (include 0 in this set)

• Defined by the regexp: ((0|1)*00) | 0

• Apply Thompson’s Rules to create an NFA

14

Basic Blocks 0 and 1

15

0

((0|1)*00) | 0

1

NFA for 0 NFA for 1

16

0

1

ε

ε

ε

ε

0|1
((0|1)*00) | 0

17

0

1

ε

ε

ε

ε

ε

ε

ε

ε

(0|1)*
((0|1)*00) | 0

18

0

1

ε

ε

ε

ε

ε

ε

ε

ε

00

(0|1)*00
((0|1)*00) | 0

19

(0|1)*00
((0|1)*00) | 0

0

1

ε

ε

ε

ε

ε

ε

ε

ε

00ε

0

1

ε

ε

ε

ε

ε

ε

ε

ε

00ε

0

((0|1)*00)|0

((0|1)*00)|0

0

1

ε

ε

ε

ε

ε

ε

ε

ε

00ε

0ε

ε

ε

ε

Thompson’s construction

22

(a(a|b))c
Build NFA recursively from

the regexp tree

n1= nfa(a)
n2= nfa(a)
n3= nfa(b)
n4= nfa(n2, n3, |)
n5= nfa(n1, n4, .)
n6= nfa(c)
n7= nfa(n5, n6, .)

aab|.c.

Post-order traversal of
the regexp tree

c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

Converts regexps to NFA

Input is the
tree in postfix

Thompson’s construction

23

(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

stack

Thompson’s construction

24

(a(a|b))c
n1= nfa(a)aab|.c.

c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n1
stack

push n1

Thompson’s construction

25

(a(a|b))c
n1= nfa(a)aab|.c.

c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n1
stack

Thompson’s construction

26

(a(a|b))c
n1= nfa(a)
n2= nfa(a)

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n2, n1
stack

push n2

Thompson’s construction

27

(a(a|b))c
n1= nfa(a)
n2= nfa(a)

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n2, n1
stack

Thompson’s construction

28

(a(a|b))c
n1= nfa(a)
n2= nfa(a)
n3= nfa(b)

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n3, n2, n1
stack

push n3

Thompson’s construction

29

(a(a|b))c
n1= nfa(a)
n2= nfa(a)
n3= nfa(b)

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n3, n2, n1
stack

Thompson’s construction

30

(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n1
stack

pop n3,n2

n1= nfa(a)
n2= nfa(a)
n3= nfa(b)

Thompson’s construction

31

(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n4, n1
stack

push n4

n1= nfa(a)
n2= nfa(a)
n3= nfa(b)
n4= nfa(n2, n3, |)

Thompson’s construction

32

(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n4, n1
stack

n1= nfa(a)

n4= nfa(n2, n3, |)

Thompson’s construction

33

(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

stack

pop n4,n1

n1= nfa(a)

n4= nfa(n2, n3, |)

Thompson’s construction

34

(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n5
stack

push n5

n1= nfa(a)

n4= nfa(n2, n3, |)
n5= nfa(n1, n4, .)

Thompson’s construction

35

(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n5
stack n5= nfa(n1, n4, .)

Thompson’s construction

36

(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n6, n5
stack

push n6

n5= nfa(n1, n4, .)
n6= nfa(c)

Thompson’s construction

37

(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n6, n5
stack n5= nfa(n1, n4, .)

n6= nfa(c)

Thompson’s construction

38

(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

stack

pop n6, n5

n5= nfa(n1, n4, .)
n6= nfa(c)

Thompson’s construction

39

(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n7
stack

push n7

n5= nfa(n1, n4, .)
n6= nfa(c)
n7= nfa(n5, n6, .)

Thompson’s construction

40

(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

stack

pop n7

n7= nfa(n5, n6, .)

Thompson’s construction

41

(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

stack

pop n7
return(n7)

no more input

stack is empty

Q: Use Thompson’s construction to
build an NFA for (0|1)(0|1)*

