
Lexical Analysis

CMPT 379: Compilers
Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

LEX5: Regexps to NFA



Building a Lexical Analyzer

• Token  ⇒ Pattern

• Pattern ⇒ Regular Expression

• Regular Expression  ⇒ NFA

• NFA ⇒ DFA 

• DFA ⇒ Table-driven implementation of DFA
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Thompson’s construction

• Converts regexps to equivalent NFA

• Six simple rules
• Empty language

• Symbols (Σ)

• Empty String  (ε)

• Alternation (r1 or r2)

• Concatenation (r1 followed by r2)

• Repetition (r1*)

3

Used by Ken 
Thompson for 
pattern-based 
search in text 
editor QED (1968)



Thompson Rule 0

• For the empty language φ
• (optionally include a sinkhole state)
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Σ
Σ



Thompson Rule 1

• For each symbol x of the alphabet, there is a NFA that accepts it
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x



Thompson Rule 2

• There is an NFA that accepts only ε
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ε



Thompson Rule 3

• Given 2 NFAs r1,r2, there is a NFA that accepts r1|r2
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r1

r2



Thompson Rule 3

• Given 2 NFAs r1,r2, there is a NFA that accepts r1|r2
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ε r1
ε

ε r2

ε



Thompson Rule 4

• Given 2 NFAs r1,r2, there is a NFA that accepts r1r2
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r1 r2



Thompson Rule 4

• Given 2 NFAs r1,r2, there is a NFA that accepts r1r2
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ε
r1 r2



Thompson Rule 4

• Given 2 NFAs r1,r2, there is a NFA that accepts r1r2
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ε
r1 r2



Thompson Rule 5 

• Given an NFA for r, there is an NFA that accepts r*
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r



Thompson Rule 5 

• Given an NFA for r, there is an NFA that accepts r*
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ε ε

ε

ε

r



Example

• Set of all binary strings that are divisible by four (include 0 in this set)

• Defined by the regexp: ((0|1)*00) | 0

• Apply Thompson’s Rules to create an NFA
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Basic Blocks 0 and 1
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0

((0|1)*00) | 0

1

NFA for 0 NFA for 1
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0

1

ε

ε

ε

ε

0|1
((0|1)*00) | 0
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0

1

ε

ε

ε

ε

ε

ε

ε

ε

(0|1)*
((0|1)*00) | 0
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0

1

ε

ε

ε

ε

ε

ε

ε

ε

00

(0|1)*00
((0|1)*00) | 0
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(0|1)*00
((0|1)*00) | 0

0

1

ε

ε

ε

ε

ε

ε

ε

ε

00ε



0

1

ε

ε

ε

ε

ε

ε

ε

ε

00ε

0

((0|1)*00)|0



((0|1)*00)|0

0

1

ε

ε

ε

ε

ε

ε

ε

ε

00ε

0ε

ε

ε

ε



Thompson’s construction
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(a(a|b))c
Build NFA recursively from 

the regexp tree

n1= nfa(a)
n2= nfa(a)
n3= nfa(b)
n4= nfa(n2, n3, | )
n5= nfa(n1, n4, . )
n6= nfa(c)
n7= nfa(n5, n6, . )

aab|.c.

Post-order traversal of 
the regexp tree

c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

Converts regexps to NFA

Input is the 
tree in postfix



Thompson’s construction
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(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

stack



Thompson’s construction
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(a(a|b))c
n1= nfa(a)aab|.c.

c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n1
stack

push  n1



Thompson’s construction
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(a(a|b))c
n1= nfa(a)aab|.c.

c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n1
stack



Thompson’s construction
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(a(a|b))c
n1= nfa(a)
n2= nfa(a)

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n2, n1
stack

push n2



Thompson’s construction
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(a(a|b))c
n1= nfa(a)
n2= nfa(a)

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n2, n1
stack



Thompson’s construction
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(a(a|b))c
n1= nfa(a)
n2= nfa(a)
n3= nfa(b)

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n3, n2, n1
stack

push n3



Thompson’s construction
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(a(a|b))c
n1= nfa(a)
n2= nfa(a)
n3= nfa(b)

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n3, n2, n1
stack



Thompson’s construction
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(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n1
stack

pop n3,n2

n1= nfa(a)
n2= nfa(a)
n3= nfa(b)



Thompson’s construction
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(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n4, n1
stack

push n4

n1= nfa(a)
n2= nfa(a)
n3= nfa(b)
n4= nfa(n2, n3, | )



Thompson’s construction
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(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n4, n1
stack

n1= nfa(a)

n4= nfa(n2, n3, | )



Thompson’s construction
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(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

stack

pop n4,n1

n1= nfa(a)

n4= nfa(n2, n3, | )



Thompson’s construction
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(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n5
stack

push n5

n1= nfa(a)

n4= nfa(n2, n3, | )
n5= nfa(n1, n4, . )



Thompson’s construction
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(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n5
stack n5= nfa(n1, n4, . )



Thompson’s construction
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(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n6, n5
stack

push n6

n5= nfa(n1, n4, . )
n6= nfa(c)



Thompson’s construction
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(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n6, n5
stack n5= nfa(n1, n4, . )

n6= nfa(c)



Thompson’s construction
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(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

stack

pop n6, n5

n5= nfa(n1, n4, . )
n6= nfa(c)



Thompson’s construction
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(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

n7
stack

push n7

n5= nfa(n1, n4, . )
n6= nfa(c)
n7= nfa(n5, n6, . )



Thompson’s construction
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(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

stack

pop n7

n7= nfa(n5, n6, . )



Thompson’s construction
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(a(a|b))c

aab|.c.
c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7

stack

pop n7
return(n7)

no more input

stack is empty

Q: Use Thompson’s construction to 
build an NFA for (0|1)(0|1)*


