LEX4: Regexps as Automata

Lexical Analysis

CMPT 379: Compilers Instructor: Anoop Sarkar anoopsarkar.github.io/compilers-class

Regular Expressions

- We write down a **pattern** as a regular expression in order to describe all lexemes for a token
- We need a decision procedure (an algorithm) for matching lexemes
- Given a pattern described as a regexp *r* and input string *s*
 - return True if $s \in L(r)$
 - return False if $s \notin L(r)$
- This decision procedure is called a **recognition** algorithm

Regular Expressions

- We will do this by compiling the regular expression into a data structure called a finite state automata (FA)
- Finite state automata can be:
 - Deterministic (DFA)
 - Non-deterministic (NFA)
- DFA and NFA each have their own **recognition** algorithm for matching against an input string.

Finite State Automata

- An alphabet Σ of input symbols
- A finite set of states *S*
 - One start state q_0
 - zero or more final (accepting) states F
- A transition function :
 - $\delta: S \times \Sigma \Rightarrow S$
- Example: δ(1, a) = 2

FA: Example 1

A finite automaton that accepts only '1'

Language of a FA: set of accepted strings

state	input	
А	^ 1	
В	^1 1	Accept
А	^ 0	Reject
А	^ ¹⁰	
В	1_0	Reject

FA: Example 2

A finite automaton accepting any number of 1's followed by a single 0

FA: Example 3

What regular expression does this automaton accept?

FA simulation == recognition algorithm

ε-move

Another kind of transition: ε -moves

state	input	
А	$x_1 x_2 x_3$	
В	$x_1 x_2 x_3$	

Deterministic Finite Automata (DFA)

Rule 1: One transition per input per state

Rule 2: No ε-moves

Can have multiple transitions for same symbol from a state

Can have ε -moves

A DFA takes only one path through the state graph (per input)

NFA can choose the path!

An NFA accepts the input if any one of the paths leads to a final state.

An NFA can reach multiple states simultaneously

Nondeterministic to Deterministic

The Subset Construction converts an NFA into a DFA

Nondeterministic to Deterministic

Q: Write down the regexp for this DFA.

NFAs vs DFAs

- NFAs and DFAs recognize the same set of languages
 - Regular languages, the languages L(r) where r is a regular expression
- DFAs are faster to execute
 - There are no choices to consider it is deterministic (hence the name)
- DFAs usually have fewer states than NFAs
- But in a worst-case analysis, DFAs can be larger than NFAs
 - Exponentially larger

Extra Slides

Nondeterministic to Deterministic

DFA state, Σ	DFA state
{A}, 0	{A, B}
{A}, 1	{A, B}
{A, B}, 0	{A, B}
{A, B}, 1	{A, B}

Q: Write down the regexp for this DFA.

A: ab(cd)*e