
Lexical Analysis

CMPT 379: Compilers
Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

LEX4: Regexps as Automata

Regular Expressions

• We write down a pattern as a regular expression in order to describe
all lexemes for a token

• We need a decision procedure (an algorithm) for matching lexemes

• Given a pattern described as a regexp 𝑟 and input string 𝑠
• return True if 𝑠 ∈ 𝐿(𝑟)
• return False if 𝑠 ∉ 𝐿(𝑟)

• This decision procedure is called a recognition algorithm

2

Regular Expressions

• We will do this by compiling the regular expression into a data
structure called a finite state automata (FA)

• Finite state automata can be:
• Deterministic (DFA)

• Non-deterministic (NFA)

• DFA and NFA each have their own recognition algorithm for matching
against an input string.

3

Finite State Automata

• An alphabet Σ of input symbols

• A finite set of states 𝑆
• One start state 𝑞0
• zero or more final (accepting) states 𝐹

• A transition function :
• 𝛿: 𝑆×Σ ⇒ 𝑆

• Example: δ(1, a) = 2

4

1 2

a

FA: Example 1

5

A B
1

Language of a FA: set of
accepted strings

Accept

Reject

Reject

A 1
B 1

A 0

A 1 0
B 1 0

state input

A finite automaton that accepts only ‘1’

FA: Example 2

6

A B
01

A finite automaton accepting any number of 1’s
followed by a single 0

FA: Example 3

7

Answer: (0|1)*00A: start state
C: final state

A B C0 0

1

1 01

What regular expression does this automaton accept?

FA simulation == recognition algorithm

8

Input string: 00100

Accept

A 00100
00100B

state input

00100C
00100A
00100B

00100C

A B C0 0

1

1 01

ε-move

9

A B
ε

A x1 x2 x3

x1 x2 x3B

state input

Another kind of transition: 𝜀-moves

Deterministic Finite Automata (DFA)

10

1

2

3

a

a

Invalid

Rule 1: One transition per input per state

Rule 2: No ε-moves

Nondeterministic Finite State Automata (NFA)

11

1

2

3

a

a

1

𝜀

a

2

3

a

𝜀

Can have multiple transitions for
same symbol from a state

Can have 𝜀-moves

Allowed!

Nondeterministic Finite State Automata (NFA)

12

1 2a 3b 4c

a

𝜀
a

A DFA takes only one path
through the state graph
(per input)

NFA can choose the path! An NFA accepts the
input if any one of
the paths leads to a
final state.

Nondeterministic Finite State Automata (NFA)

13

A B C
0 0

1

0

{A} 100

100{A}

state input

100{A,B}

100{A,B,C}

An NFA can reach multiple states simultaneously

Q: Draw an
NFA for regexp
(0|1)(0|1)*

Q: Write down
the regexp for
this NFA.

Nondeterministic to Deterministic

14

A B C
0 0

1

0

DFA state, Σ DFA state

{A}, 0 {A, B}

{A}, 1 {A}

{A, B}, 0 {A, B, C}
{A, B}, 1 {A}

{A, B, C}, 0 {A, B, C}
{A, B, C}, 1 {A}

{A,B}

{A} 0

1
1

0

1
{A,B,C}

0

The Subset Construction converts an NFA into a DFA

Nondeterministic to Deterministic

15

{A,B}

{A} 0

1
1

0

1
{A,B,C}

0

0 0

1

1 01

16

Q: Write down the regexp for this DFA.

NFAs vs DFAs

• NFAs and DFAs recognize the same set of languages
• Regular languages, the languages L(r) where r is a regular expression

• DFAs are faster to execute
• There are no choices to consider – it is deterministic (hence the name)

• DFAs usually have fewer states than NFAs

• But in a worst-case analysis, DFAs can be larger than NFAs
• Exponentially larger

17

Extra Slides

Nondeterministic Finite State Automata (NFA)

19

A 0

0

11

B

Q: Draw an
NFA for regexp
(0|1)(0|1)*

Nondeterministic to Deterministic

20

DFA state, Σ DFA state

{A}, 0 {A, B}

{A}, 1 {A, B}

{A, B}, 0 {A, B}
{A, B}, 1 {A, B}

A 0

0

11

B

A 0

0

1 1

A,B

21

A: ab(cd)*e

Q: Write down the regexp for this DFA.

