Lexical Analysis

CMPT 379: Compilers
Instructor: Anoop Sarkar
anoopsarkar.github.io/compilers-class

xkcd.com/208

Regular Expressions are Trees

Regular Expressions are ambiguous

Regexp operator precedence rules

1. Grouping using parentheses ()
2. Unary operator *
3. Binary operator for concatenation
4. Binary operator for alternation |

Q: Find the smallest set of strings that can find the above operator precedence rules for the regexp $a c \mid b c$.

```
Hint: Compare the matching on input strings between the original regexp ac|bc and the 5 unambiguous regexps.
```


Regular expressions are trees

$a c \mid b c$

abc

Equivalence of Regular Expressions

Equivalence of Regexps $\left(0(10)^{*} 1\right) \mid(01)^{*}=(01)^{*}$?

| - (RS)T $==$ R(ST)
 Commutative
 - (R\|S)|T == R|(S|T)
 - $(R \mid S)==(S \mid R)$ | - $R^{*}==R R^{*} \mid \varepsilon$
 - $\mathrm{R}^{*} \mathrm{R}^{*}==\left(\mathrm{R}^{*}\right)^{*}$
 - $\left(\mathrm{R}^{*}\right)^{*}=\mathrm{R}^{*}$ |
| :---: | :---: |
| - (R\|S)T == (RT|ST)
 Factor
 - $R(S \mid T)==R S \mid R T$ | - $R^{*}==R^{*} R$
 - $(R S)^{*} R==R(S R)^{*}$ |
| - $R==R \mid R$
 - $R \mid R==R \varepsilon$ | - $(R \mid S)^{*}==\left(R^{*} S^{*}\right)^{*}$
 - $\left(R^{*} S^{*}\right)^{*}==\left(R^{*} S\right)^{*} R^{*}$
 - $\left(R^{*} S\right)^{*} R^{*}==\left(R^{*} \mid S^{*}\right)^{*}$ |

Equivalence of Regexps

$$
\left(0(10)^{*} 1\right) \mid(01)^{*}==(01)^{*} ?
$$

Equivalence of Regexps

- (0(10)*1)|(01)*

$$
(R S) * R==R(S R)^{*}
$$

- (01(01)*)|(01)*
- (01(01)*)|(01)*

$$
R S==(R S)
$$

- ((01)(01)*)|(01)*
- ((01)(01)*)|(01)*

$$
\mathrm{R}+==\mathrm{RR} *
$$

- (01)+|(01)*
- (01)+|(01)*

$$
\sqrt{R+\mid R^{*}}==\left(R R^{*}\right) \mid R^{*}=R^{*}
$$

- (01)*

