[LEX2: Regular Expressions]

Lexical Analysis

CMPT 379: Compilers
Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

Regular Languages

* The set of regular languages: each element is a regular language

* Each regular language is a formal language, i.e. a set of strings

Regular Expressions and Regular Languages

e Meaning function L(r)
* L(r) = The meaning of regexp r is the regular language for r
e L(a¥*)= {¢,a,aa,aaaq, ...}
* L) ={¢}
* L(a)={a}
* L(ry|ry)=L(r) UL(ry)
* Lriry) ={xy|x € L(r),y €L(r)}
* Lr?)={xy |x €L(r),y €L(r)}
* L(r{*)=L(ry)°UL(ry)* UL(11)? UL(1r)3 ...

Integer: a non-empty sequence of digits

digit =(o0|1|2|3|4]|5]|6|7|8]|9)

{digit}{digit}* = {digit}+

|dentifier: sequence of letters or digits, starting
with a letter

digit =[0-9]
letter =[a-zA-Z]

{letter}({letter}|{digit})*

Whitespace: a non-empty sequence of blanks,
newlines and tabs

(" " "NET]\

Pattern definition for numbers

digit = [0-9]

digits = [0-9]+

opt frac = ("."{digits})?

opt_exp = ((e|E)(\+|\-)?{digits})?
num = {digits}{opt frac}{opt _exp}

345, 345.04 , 2e-7, 2e7, 2e+7, 3.14e5

Lex regular expressions

c non-operator character c a

\c character c literally *

"s" string s literally ok

. any character but newline a.*b

A beginning of line ~abc used for matching

$ end of line abc$ used for matching
[s] any one of characters in string s [abc] (alblc)

["s] any one character not in string s [~a] (blc) £ ={a,b,c}
r* zero or more strings matching r a*

r+ one or more strings matching r a+ aa*

r? zerooroner a? (ale)

r{m,n} between m and n occurences of r a{2,3} (aalaaa)

rir; an r, followed by anr, ab

rilr; anr,oranr, alb

(r) same as r (a|b)

ry/r; r; when followed by anr, abc/123 rir,used for matching

Regular Expressions for Lexical Analysis

Regular Expressions for Lexical Analysis

* Write a regexp pattern for each token:
e R;:T_INTCONSTANT = {digit}+
e R,:T_DOUBLE = “double”
* R;: T_IDENTIFIER {letter}({letter}|{digit})+

e andsoon...

e Construct an ordered list R containing all t regexps.
* R = [Ry, Ry, R3,) R¢]

The order of regexps is

important and provided as
part of the lexer definition

10

Regular Expressions for Lexical Analysis

R,:T_INTCONSTANT

v oounL DoOoODBD
6
Max Munch: Longest
T oeniiieR ol o1l match wins
8
Start position Next Start position

OBOoDBEOoDBRBRn-

Heée

Input String:

11

Regular Expressions for Lexical Analysis

R,:T_INTCONSTANT
R,:T_DOUBLE

Ry:T_IDENTIFIER

u
u

Start position

Break ties by choosing the
regexp that is earlier in the
list (higher priority) which is
T_DOUBLE in this case.

s aaooDBEEE -

12

Regular Expressions for Lexical Analysis

What if no regexp matches?

Ry :T_INTCONSTANT

Create a new Error regexp that matches any input.
R,:T_DOUBLE

Put the Error regexp as the last in the list (the lowest priority).

R;: T_IDENTIFIER

So when it matches we know there was a lexical analysis error.

Start position

Input String: --

13

Regular Expressions for Lexical Analysis

InpUt' X1y wes X Q: Provide the list of tokens for
the input 1doublel (using the

esus
e s=1 token definitions from slide 10)
whie s <
for all regexps Ry:
(R, o 50) = b

m, i, = max(iy, ..., i) : :

. Break ties by choosing
reSUlt'append((Rm’ lm)) smallest m value
Ss=i,+1 (higher priority regexp)

return(result, s)

14

Regexps in Lexical Analysis

* Regular expressions are a concise notation for string patterns

e Use in lexical analysis requires small extensions
* Maximal munch to handle ambiguous matches
* Break ties using priority ordering

e Handle errors

* A good algorithm for lexical analysis will:

* Require only single pass over the input

* Few operations per character (lookup table for matching a regexp)

15

