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Lexical Analysis
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Also called lexing or scanning, take input program string and convert into tokens

double f = sqrt(-1);

T_DOUBLE (“double”)

T_IDENT (“f”)

T_OP (“=”)

T_IDENT (“sqrt”)

T_LPAREN (“(”)

T_OP (“-”)

T_INTCONSTANT (“1”)

T_RPAREN (“)”)

T_SEP (“;”)

Example



Token Attributes

• Some tokens have attributes:
• T_IDENT (“sqrt”)

• T_INTCONSTANT (“1”)

• Other tokens do not:
• T_WHILE 

• Source code location for error reports

• A token is defined using a pattern.

• The pattern for identifiers: a sequence of one or more letters, digits and 
underscores which starts with a letter or underscore.
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T_IDENT

Token

(“sqrt”)

Lexeme



Lexical errors

• What if user omits spaces: doublef=sqrt(-1);
• No lexical error!

• Single token is produced: T_IDENT(“doublef”)

• Not two tokens: T_DOUBLE, T_IDENT(“f”)

• Typically few lexical error types
• Illegal chars

• Unclosed string constants

• Comments that are not terminated correctly
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The lexer does not check 
for syntax errors!



Lexical errors

• Lexical analysis should not disambiguate tokens 
• e.g. unary operator − (minus) versus binary operator − (minus)

• Use the same token T_MINUS for both

• It’s the job of the parser to disambiguate based on the context
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Q: Using the same token definitions as before, 
provide the sequence of token(s) that will be 
produced for input double(-1)



Ad-hoc Lexer



Implementing Lexers: Loop and switch scanners

• Big nested switch/case statements

• Lots of getc()/ungetc() calls
• Buffering and streams; Sentinels for push-backs

• Can be error-prone

• Changing or adding a keyword is problematic
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Read source of an ad-hoc lexer: LexTokenInternal in clang

https://github.com/llvm/llvm-project/blob/3170d54842655d6d936aae32b7d0bc92fce7f22e/clang/lib/Lex/Lexer.cpp


Implementing Lexers: Loop and switch scanners

• Does the implementation exactly capture the language 
specification? 

• How can we show correctness?

• Key idea: separate the definition of tokens from the 
implementation

• Problem: we need to reason about patterns and how they 
can be used to define tokens (recognize strings).
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Specifying Patterns using Regular Expressions



Formal Languages: Recap

• Symbols (each of length one): 𝑎, 𝑏, 𝑐

• Alphabet : finite set of symbols Σ = {𝑎, 𝑏}

• String: sequence of symbols (length = #symbols) 𝑏𝑎𝑏 or 𝑎2 = 𝑎𝑎

• Empty string (has zero length): 𝜀

• Define: Σ𝜀 = Σ ∪ {𝜀}

• Define: Σ0 = 𝜀 , Σ1 = 𝑎, 𝑏 , Σ2 = 𝑎𝑎, 𝑎𝑏, 𝑏𝑏, 𝑏𝑎

• Set of all strings: Σ ∗= Σ0 ∪ Σ1 ∪ Σ2 ∪ Σ3 ∪⋯∪ Σ𝑛 : 𝑛 → ∞

• (Formal) Language: a set of strings { 𝑎𝑛𝑏𝑛: 𝑛 > 0 }
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All strings of length 0, 1, 2 
using symbols from the 
alphabet Σ

Q: How many strings in 
Σ𝑛 if the alphabet Σ has 
𝑚 elements.



The Library of Babel: Visualizing Σ ∗
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Regular Languages
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Recursively defining the set of all regular languages:
1. The empty set and {𝑎} for all 𝑎 in Se are regular languages
2. If 𝐿1 and 𝐿2 and 𝐿 are regular languages, then:

(concatenation)

(union)
(Kleene closure)

are also regular languages

3. There are no other regular languages
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Regular Languages

• The set of regular languages: each element is a regular language
• 𝑅 = {𝑅1 , 𝑅2 , … , 𝑅𝑛, … }

• Each regular language is an example of a (formal) language, i.e. a set 
of strings

e.g. {𝑎𝑚𝑏𝑛: 𝑚 > 0, 𝑛 > 0 }
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Formal Grammars

• A formal grammar is a concise description of a formal language using 
a specialized syntax

• For example, a regular expression is a concise description of a 
regular language
(a|b)*abb is the set of all strings over the alphabet {a, b} which end in abb

• We will use regular expressions (regexps) in order to define tokens in 
our compiler, 
• e.g. Python integers are defined as the pattern [+-]?([1-9][0-9]*|0)
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any number 
from 1 to 9

zero or more numbers 
from 0 to 9



Regular Expressions: Definition

• Every symbol of S È { e } is a regular expression (regexp)
• If S = {𝑎, 𝑏} then a,b are regexps

• If r1 and r2 are regular expressions, combine them using:
• Concatenation:  r1r2, e.g. ab or aba
• Alternation:  r1|r2, e.g. a|b
• Repetition: r1*, e.g. a* or b*

• No other core operators are defined

• But other operators can be defined as combinations of the basic 
operators, e.g. a+ = aa*
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Expression Matches Example Using core operators
c non-operator character c a

\c character c literally \*

"s" string s literally "**"

. any character but newline a.*b

^ beginning of line ^abc used for matching

$ end of line abc$ used for matching
[s] any one of characters in string s [abc] (a|b|c)

[^s] any one character not in string s [^a] (b|c) S = {𝑎, 𝑏, 𝑐}

r* zero or more strings matching r a*

r+ one or more strings matching r a+ aa*

r? zero or one r a? (𝑎|𝜀)
r{m,n} between m and n occurences of r a{2,3} (aa|aaa)

r1r2 an r1 followed by an r2 ab

r1|r2 an r1 or an r2 a|b

(r) same as r (a|b)

r1/r2 r1 when followed by an r2 abc/123 r1r2used for matching



Limitations(?) of Regular Expressions

• Regexps can be used only if the language definition is sane
• Should not permit crazy long-distance effects (e.g. Fortran)
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DO 5 I = 1,5 T_DO T_INT(5) T_ID(I) T_EQ …

DO 5 I = 1.5 T_ID(DO 5 I) T_EQ T_FLOATCONST(1.5)


