
Lexical Analysis

CMPT 379: Compilers
Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

LEX1: Intro to Regexps

Lexical Analysis

2

Also called lexing or scanning, take input program string and convert into tokens

double f = sqrt(-1);

T_DOUBLE (“double”)

T_IDENT (“f”)

T_OP (“=”)

T_IDENT (“sqrt”)

T_LPAREN (“(”)

T_OP (“-”)

T_INTCONSTANT (“1”)

T_RPAREN (“)”)

T_SEP (“;”)

Example

Token Attributes

• Some tokens have attributes:
• T_IDENT (“sqrt”)

• T_INTCONSTANT (“1”)

• Other tokens do not:
• T_WHILE

• Source code location for error reports

• A token is defined using a pattern.

• The pattern for identifiers: a sequence of one or more letters, digits and
underscores which starts with a letter or underscore.

3

T_IDENT

Token

(“sqrt”)

Lexeme

Lexical errors

• What if user omits spaces: doublef=sqrt(-1);
• No lexical error!

• Single token is produced: T_IDENT(“doublef”)

• Not two tokens: T_DOUBLE, T_IDENT(“f”)

• Typically few lexical error types
• Illegal chars

• Unclosed string constants

• Comments that are not terminated correctly

4

The lexer does not check
for syntax errors!

Lexical errors

• Lexical analysis should not disambiguate tokens
• e.g. unary operator − (minus) versus binary operator − (minus)

• Use the same token T_MINUS for both

• It’s the job of the parser to disambiguate based on the context

5

Q: Using the same token definitions as before,
provide the sequence of token(s) that will be
produced for input double(-1)

Ad-hoc Lexer

Implementing Lexers: Loop and switch scanners

• Big nested switch/case statements

• Lots of getc()/ungetc() calls
• Buffering and streams; Sentinels for push-backs

• Can be error-prone

• Changing or adding a keyword is problematic

7

Read source of an ad-hoc lexer: LexTokenInternal in clang

https://github.com/llvm/llvm-project/blob/3170d54842655d6d936aae32b7d0bc92fce7f22e/clang/lib/Lex/Lexer.cpp

Implementing Lexers: Loop and switch scanners

• Does the implementation exactly capture the language
specification?

• How can we show correctness?

• Key idea: separate the definition of tokens from the
implementation

• Problem: we need to reason about patterns and how they
can be used to define tokens (recognize strings).

8

Specifying Patterns using Regular Expressions

Formal Languages: Recap

• Symbols (each of length one): 𝑎, 𝑏, 𝑐

• Alphabet : finite set of symbols Σ = {𝑎, 𝑏}

• String: sequence of symbols (length = #symbols) 𝑏𝑎𝑏 or 𝑎2 = 𝑎𝑎

• Empty string (has zero length): 𝜀

• Define: Σ𝜀 = Σ ∪ {𝜀}

• Define: Σ0 = 𝜀 , Σ1 = 𝑎, 𝑏 , Σ2 = 𝑎𝑎, 𝑎𝑏, 𝑏𝑏, 𝑏𝑎

• Set of all strings: Σ ∗= Σ0 ∪ Σ1 ∪ Σ2 ∪ Σ3 ∪⋯∪ Σ𝑛 : 𝑛 → ∞

• (Formal) Language: a set of strings { 𝑎𝑛𝑏𝑛: 𝑛 > 0 }

10

All strings of length 0, 1, 2
using symbols from the
alphabet Σ

Q: How many strings in
Σ𝑛 if the alphabet Σ has
𝑚 elements.

The Library of Babel: Visualizing Σ ∗

11

Regular Languages

12

Recursively defining the set of all regular languages:
1. The empty set and {𝑎} for all 𝑎 in Se are regular languages
2. If 𝐿1 and 𝐿2 and 𝐿 are regular languages, then:

(concatenation)

(union)
(Kleene closure)

are also regular languages

3. There are no other regular languages

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Anoop Sarkar

Regular Languages

• The set of regular languages: each element is a regular language
• 𝑅 = {𝑅1 , 𝑅2 , … , 𝑅𝑛, … }

• Each regular language is an example of a (formal) language, i.e. a set
of strings

e.g. {𝑎𝑚𝑏𝑛: 𝑚 > 0, 𝑛 > 0 }

13

Formal Grammars

• A formal grammar is a concise description of a formal language using
a specialized syntax

• For example, a regular expression is a concise description of a
regular language
(a|b)*abb is the set of all strings over the alphabet {a, b} which end in abb

• We will use regular expressions (regexps) in order to define tokens in
our compiler,
• e.g. Python integers are defined as the pattern [+-]?([1-9][0-9]*|0)

14

any number
from 1 to 9

zero or more numbers
from 0 to 9

Regular Expressions: Definition

• Every symbol of S È { e } is a regular expression (regexp)
• If S = {𝑎, 𝑏} then a,b are regexps

• If r1 and r2 are regular expressions, combine them using:
• Concatenation: r1r2, e.g. ab or aba
• Alternation: r1|r2, e.g. a|b
• Repetition: r1*, e.g. a* or b*

• No other core operators are defined

• But other operators can be defined as combinations of the basic
operators, e.g. a+ = aa*

15

16

L
e
x

re
gu

la
r e

xp
re

ss
io

ns
Expression Matches Example Using core operators
c non-operator character c a

\c character c literally *

"s" string s literally "**"

. any character but newline a.*b

^ beginning of line ^abc used for matching

$ end of line abc$ used for matching
[s] any one of characters in string s [abc] (a|b|c)

[^s] any one character not in string s [^a] (b|c) S = {𝑎, 𝑏, 𝑐}

r* zero or more strings matching r a*

r+ one or more strings matching r a+ aa*

r? zero or one r a? (𝑎|𝜀)
r{m,n} between m and n occurences of r a{2,3} (aa|aaa)

r1r2 an r1 followed by an r2 ab

r1|r2 an r1 or an r2 a|b

(r) same as r (a|b)

r1/r2 r1 when followed by an r2 abc/123 r1r2used for matching

Limitations(?) of Regular Expressions

• Regexps can be used only if the language definition is sane
• Should not permit crazy long-distance effects (e.g. Fortran)

17

DO 5 I = 1,5 T_DO T_INT(5) T_ID(I) T_EQ …

DO 5 I = 1.5 T_ID(DO 5 I) T_EQ T_FLOATCONST(1.5)

