LEX1: Intro to Regexps

Lexical Analysis

CMPT 379: Compilers Instructor: Anoop Sarkar anoopsarkar.github.io/compilers-class

Lexical Analysis

Also called *lexing* or *scanning*, take input program *string* and convert into *tokens*

	Example		
		T_DOUBLE	("double")
		T_IDENT	("f")
		T_OP	("=")
<pre>double f = sqrt(-1);</pre>		T_IDENT	("sqrt")
		T_LPAREN	("(")
		T_OP	("-")
		T_INTCONSTANT	("1")
		T_RPAREN	(")")
		T_SEP	(";")

Token Attributes

- Some tokens have attributes:
 - T_IDENT ("sqrt")
 - T_INTCONSTANT ("1")
- Other tokens do not:
 - T_WHILE
- Source code location for error reports
- A token is defined using a **pattern**.
- The **pattern** for identifiers: a sequence of one or more letters, digits and underscores which starts with a letter or underscore.

Lexical errors

The lexer does not check for syntax errors!

- What if user omits spaces: doublef=sqrt(-1);
 - No lexical error!
 - Single token is produced: T_IDENT("doublef")
 - Not two tokens: T_DOUBLE, T_IDENT("f")
- Typically few lexical error types
 - Illegal chars
 - Unclosed string constants
 - Comments that are not terminated correctly

Lexical errors

- Lexical analysis should not disambiguate tokens
 - e.g. unary operator (minus) versus binary operator (minus)
 - Use the same token T_MINUS for both
 - It's the job of the parser to disambiguate based on the context

Q: Using the same token definitions as before, provide the sequence of token(s) that will be produced for input double(-1)

Ad-hoc Lexer

Implementing Lexers: Loop and switch scanners

- Big nested switch/case statements
- Lots of getc()/ungetc() calls
 - Buffering and streams; Sentinels for push-backs
- Can be error-prone
- Changing or adding a keyword is problematic

Read source of an ad-hoc lexer: LexTokenInternal in clang

Implementing Lexers: Loop and switch scanners

- Does the implementation exactly capture the language specification?
- How can we show correctness?
- Key idea: separate the definition of tokens from the implementation
- **Problem**: we need to reason about patterns and how they can be used to define tokens (recognize strings).

Specifying Patterns using Regular Expressions

Formal Languages: Recap

- Symbols (each of length one): *a*, *b*, *c*
- Alphabet : finite set of symbols $\Sigma = \{a, b\}$
- String: sequence of symbols (length = #symbols) *bab* or $a^2 = aa$

All strings of length 0, 1, 2

using symbols from the

alphabet Σ

- Empty string (has zero length): ε
- Define: $\Sigma^{\varepsilon} = \Sigma \cup \{\varepsilon\}$
- Define: $\Sigma^0 = \{\epsilon\}, \Sigma^1 = \{a, b\}, \Sigma^2 = \{aa, ab, bb, ba\}$
- Set of all strings: $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \cdots \cup \Sigma^n : n \to \infty$
- Q: How many strings in Σ^n if the alphabet Σ has m elements.

• (Formal) Language: a set of strings { $a^n b^n$: n > 0 }

The Library of Babel: Visualizing Σ

Regular Languages

Recursively defining the set of all regular languages:

- 1. The empty set and $\{a\}$ for all a in Σ^{ε} are regular languages
- 2. If L_1 and L_2 and L are regular languages, then:

$$L_{1} \cdot L_{2} = \{xy \mid x \in L_{1} \text{ and } y \in L_{2}\}$$
(concatenation)

$$L_{1} \cup L_{2}$$
(union)

$$L^{\bigcirc} = \bigcup_{i=0}^{\infty} L^{i}$$
(Kleene closure)
are also regular languages

$$L^{\circ} \cup \sqcup^{\circ} \cup U^{\circ} \cup U^$$

3. There are no other regular languages

Regular Languages

- The set of regular languages: each element is a regular language
 R = {R₁, R₂, ..., R_n, ...}
- Each regular language is an example of a (formal) language, i.e. a set of strings

e.g. $\{a^m b^n: m > 0, n > 0\}$

Formal Grammars

- A formal grammar is a concise description of a formal language using a specialized syntax
- For example, a **regular expression** is a concise description of a regular language

(a|b)*abb is the set of all strings over the alphabet $\{a, b\}$ which end in *abb*

- We will use regular expressions (regexps) in order to define tokens in our compiler,
 - e.g. Python integers are defined as the pattern [+-]?([1-9][0-9]*|0)

any number

from 1 to 9

zero or more numbers

from 0 to 9

Regular Expressions: Definition

- Every symbol of $\Sigma \cup \{ \epsilon \}$ is a regular expression (regexp)
 - If $\Sigma = \{a, b\}$ then a, b are regexps
- If r_1 and r_2 are regular expressions, combine them using:
 - Concatenation: r_1r_2 , e.g. ab or aba
 - Alternation: $r_1 | r_2$, e.g. a | b
 - Repetition: r_1^* , e.g. a^* or b^*
- No other core operators are defined
- But other operators can be defined as combinations of the basic operators, e.g. a+ = aa*

Expression	Matches	Example	Using core operators
с	non-operator character c	а	
\ <i>c</i>	character c literally	*	
"s"	string s literally	"**"	
•	any character but newline	a.*b	
٨	beginning of line	^abc	used for matching
\$	end of line	abc\$	used for matching
[s]	any one of characters in string s	[abc]	(a b c)
[^s]	any one character not in string s	[^a]	$(b c) \Sigma = \{a, b, c\}$
r*	zero or more strings matching r	a*	
r+	one or more strings matching r	a+	aa*
r?	zero or one r	a?	$(a \varepsilon)$
r{m,n}	between m and n occurences of r	a{2,3}	(aa aaa)
r_1r_2	an r_1 followed by an r_2	ab	
r_1/r_2	an r ₁ or an r ₂	alb	
(r)	same as r	(a b)	
r_{1}/r_{2}	r_1 when followed by an r_2	abc/123	r_1r_2 used for matching

Limitations(?) of Regular Expressions

- Regexps can be used only if the language definition is sane
 - Should not permit crazy long-distance effects (e.g. Fortran)

DO 5 I = 1,5 \implies T_DO T_INT(5) T_ID(I) T_EQ ... DO 5 I = 1.5 \implies T_ID(DO 5 I) T_EQ T_FLOATCONST(1.5)