
  

Garbage Collection



  

Runtime Memory Management

● Most constructs in a programming language 
need memory.

● Some need a fixed amount of memory

● (such as?)

● Some require a variable amount of memory:

● Local variables

● Objects

● Arrays

● Strings



  

Memory Management So Far

● Some memory is preallocated and persists 
throughout the program:

● Global variables, virtual function tables, executable code, 
etc.

● Some memory is allocated on the runtime stack:

● Local variables, parameters, temporaries.

● Some memory is allocated in the heap:

● Arrays, objects.

● Memory management for the first two is trivial.

● How do we manage heap-allocated memory?



  

Manual Memory Management

● Option One: Have the programmer handle 
allocation and deallocation of dynamic memory.

● Approach used in C, C++.

● Advantages:

● Programmer can exercise precise control over 
memory usage.

● Disadvantages:

● Programmer has to exercise precise control over 
memory usage.



  

Strengths of Manual Management

● Comparatively easy to implement.

● “Just” need a working memory manager.

● Allows programmers to make aggressive 
performance optimizations.

● Programmer can choose allocation scheme that 
achieves best performance.



  

Problems with Manual Management

● Easily leads to troublesome bugs:

● Memory leaks where resources are never freed.

● Double frees where a resource is freed twice 
(major security risk).

● Use-after-frees where a deallocated resource is 
still used (major security risk).

● Programming languages with manual memory 
management are almost always not type-safe.



  

Automatic Memory Management

● Idea: Have the runtime environment automatically 
reclaim memory.

● Objects that won't be used again are called garbage.

● Reclaiming garbage objects automatically is called 
garbage collection.

● Advantages:

● Programmer doesn't have to reclaim unused resources.

● Disadvantages:

● Programmer can't reclaim unused resources.



  

Preliminaries



  

What is Garbage?

● An object is called garbage at some point during 
execution if it will never be used again.

● What is garbage at the indicated points?
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int main() {

    Object x, y;

    x = new Object();

    y = new Object();

    /* Point A */

    x.doSomething();

    y.doSomething();

    /* Point B */

    y = new Object();

    /* Point C */
}



  

Approximating Garbage

● In general, it is undecidable whether an object is 
garbage.

● Need to rely on a conservative approximation.

● An object is reachable if it can still be referenced by the 
program.

● Goal for today: detect and reclaim unreachable objects.

● This does not prevent memory leaks!

● Many reachable objects are never used again.

● It is very easy to have memory leaks in garbage-collected 
languages.

● Interesting read: “Low-Overhead Memory Leak 
Detection Using Adaptive Statistical Profiling” by Chilimbi 
and Hauswirth.



  

Assumptions for Today

● Assume that, at runtime, we can find all existing 
references in the program.

● Cannot fabricate a reference to an existing object 
ex nihilo.

● Cannot cast pointers to integers or vice-versa.

● Examples: Java, Python, JavaScript, PHP, etc.

● Non-examples: C, C++

● Advance knowledge of references allows for 
precise introspection at runtime.



  

Types of Garbage Collectors

● Incremental vs stop-the-world:

● An incremental collector is one that runs concurrently with the 
program.

● A stop-the-world collector pauses program execution to look for 
garbage.

● Which is (generally) more precise?

● Which would you use in a nuclear reactor control system?

● Compacting vs non-compacting:

● A compacting collector is one that moves objects around in 
memory.

● A non-compacting collector is one that leaves all objects where 
they originated.

● Which (generally) spends more time garbage collecting?

● Which (generally) leads to faster program execution?
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Reference Counting

● A simple framework for garbage collection.

● Though it has several serious weaknesses!

● Idea: Store in each object a reference count (refcount) 
tracking how many references exist to the object.

● Creating a reference to an object increments its refcount.

● Removing a reference to an object decrements its refcount.

● When an object has zero refcount, it is unreachable and 
can be reclaimed.

● This might decrease other objects' counts and trigger more 
reclamations.



  

Reference Counting in Action



  

Reference Counting in Action

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;

    LinkedList mid = new LinkedList;

    LinkedList tail = new LinkedList;

    head.next = mid;

    mid.next = tail;

    

    mid = tail = null;

    head.next.next = null;

    head = null;

}
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Reference Counting Details

● When creating an object, set its refcount to 0.

● When creating a reference to an object, 
increment its refcount.

● When removing a reference from an object:

● Decrement its refcount.

● If its refcount is zero:

– Remove all outgoing references from that object.

– Reclaim the memory for that object.



  

One Major Problem



  

One Major Problem

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;

    LinkedList mid = new LinkedList;

    LinkedList tail = new LinkedList;

    head.next = mid;

    mid.next = tail;

    tail.next = head;

    head = null;

    mid = null;

    tail = null;

}



  

One Major Problem

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;
    LinkedList mid = new LinkedList;
    LinkedList tail = new LinkedList;

    head.next = mid;

    mid.next = tail;

    tail.next = head;

    head = null;

    mid = null;

    tail = null;

}



  

One Major Problem

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;
    LinkedList mid = new LinkedList;
    LinkedList tail = new LinkedList;

    head.next = mid;

    mid.next = tail;

    tail.next = head;

    head = null;

    mid = null;

    tail = null;

}

head 1

mid

1tail

1



  

One Major Problem

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;

    LinkedList mid = new LinkedList;

    LinkedList tail = new LinkedList;

    head.next = mid;
    mid.next = tail;

    tail.next = head;

    head = null;

    mid = null;

    tail = null;

}

head 1

mid

1tail

1



  

One Major Problem

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;

    LinkedList mid = new LinkedList;

    LinkedList tail = new LinkedList;

    head.next = mid;
    mid.next = tail;

    tail.next = head;

    head = null;

    mid = null;

    tail = null;

}

head 1

mid

1tail

1



  

One Major Problem

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;

    LinkedList mid = new LinkedList;

    LinkedList tail = new LinkedList;

    head.next = mid;
    mid.next = tail;

    tail.next = head;

    head = null;

    mid = null;

    tail = null;

}

head 1

mid

2tail

1



  

One Major Problem

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;

    LinkedList mid = new LinkedList;

    LinkedList tail = new LinkedList;

    head.next = mid;

    mid.next = tail;
    tail.next = head;

    head = null;

    mid = null;

    tail = null;

}

head 1

mid

2tail

1



  

One Major Problem

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;

    LinkedList mid = new LinkedList;

    LinkedList tail = new LinkedList;

    head.next = mid;

    mid.next = tail;
    tail.next = head;

    head = null;

    mid = null;

    tail = null;

}

head 1

mid

2tail

1



  

One Major Problem

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;

    LinkedList mid = new LinkedList;

    LinkedList tail = new LinkedList;

    head.next = mid;

    mid.next = tail;
    tail.next = head;

    head = null;

    mid = null;

    tail = null;

}

head 1

mid

2tail

2



  

One Major Problem

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;

    LinkedList mid = new LinkedList;

    LinkedList tail = new LinkedList;

    head.next = mid;

    mid.next = tail;

    tail.next = head;

    head = null;

    mid = null;

    tail = null;

}

head 1

mid

2tail

2



  

One Major Problem

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;

    LinkedList mid = new LinkedList;

    LinkedList tail = new LinkedList;

    head.next = mid;

    mid.next = tail;

    tail.next = head;

    head = null;

    mid = null;

    tail = null;

}

head 1

mid

2tail

2



  

One Major Problem

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;

    LinkedList mid = new LinkedList;

    LinkedList tail = new LinkedList;

    head.next = mid;

    mid.next = tail;

    tail.next = head;

    head = null;

    mid = null;

    tail = null;

}

head 2

mid

2tail

2



  

One Major Problem

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;

    LinkedList mid = new LinkedList;

    LinkedList tail = new LinkedList;

    head.next = mid;

    mid.next = tail;

    tail.next = head;

    head = null;
    mid = null;

    tail = null;

}

head 2

mid

2tail

2



  

One Major Problem

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;

    LinkedList mid = new LinkedList;

    LinkedList tail = new LinkedList;

    head.next = mid;

    mid.next = tail;

    tail.next = head;

    head = null;
    mid = null;

    tail = null;

}

head 2

mid

2tail

2



  

One Major Problem

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;

    LinkedList mid = new LinkedList;

    LinkedList tail = new LinkedList;

    head.next = mid;

    mid.next = tail;

    tail.next = head;

    head = null;
    mid = null;

    tail = null;

}

head 1

mid

2tail

2



  

One Major Problem

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;

    LinkedList mid = new LinkedList;

    LinkedList tail = new LinkedList;

    head.next = mid;

    mid.next = tail;

    tail.next = head;

    head = null;

    mid = null;
    tail = null;

}

head 1

mid

2tail

2



  

One Major Problem

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;

    LinkedList mid = new LinkedList;

    LinkedList tail = new LinkedList;

    head.next = mid;

    mid.next = tail;

    tail.next = head;

    head = null;

    mid = null;
    tail = null;

}

head 1

mid

2tail

2



  

One Major Problem

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;

    LinkedList mid = new LinkedList;

    LinkedList tail = new LinkedList;

    head.next = mid;

    mid.next = tail;

    tail.next = head;

    head = null;

    mid = null;
    tail = null;

}

head 1

mid

1tail

2



  

One Major Problem

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;

    LinkedList mid = new LinkedList;

    LinkedList tail = new LinkedList;

    head.next = mid;

    mid.next = tail;

    tail.next = head;

    head = null;

    mid = null;

    tail = null;
}

head 1

mid

1tail

2



  

One Major Problem

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;

    LinkedList mid = new LinkedList;

    LinkedList tail = new LinkedList;

    head.next = mid;

    mid.next = tail;

    tail.next = head;

    head = null;

    mid = null;

    tail = null;
}

head 1

mid

1tail

2



  

One Major Problem

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;

    LinkedList mid = new LinkedList;

    LinkedList tail = new LinkedList;

    head.next = mid;

    mid.next = tail;

    tail.next = head;

    head = null;

    mid = null;

    tail = null;
}

head 1

mid

1tail

1



  

One Major Problem

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;

    LinkedList mid = new LinkedList;

    LinkedList tail = new LinkedList;

    head.next = mid;

    mid.next = tail;

    tail.next = head;

    head = null;

    mid = null;

    tail = null;

}

head 1

mid

1tail

1



  

One Major Problem

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;

    LinkedList mid = new LinkedList;

    LinkedList tail = new LinkedList;

    head.next = mid;

    mid.next = tail;

    tail.next = head;

    head = null;

    mid = null;

    tail = null;

}

head 1

mid

1tail

1Problem?

Anoop Sarkar



  

Reference Cycles

● A reference cycle is a set of objects that 
cyclically refer to one another.

● Because all the objects are referenced, all have 
nonzero refcounts and are never reclaimed.

● Issue: Refcount tracks number of references, 
not number of reachable references.

● Major problems in languages/systems that use 
reference counting:

● e.g. Perl, Firefox 2.



  

Analysis of Reference Counting

● Advantages:

● Simple to implement.

● Can be implemented as a library on top of explicit 
memory management (see C++ shared_ptr).

● Disadvantages:

● Fails to reclaim all unreachable objects.

● Can be slow if a large collection is initiated.

● Noticeably slows down assignments.



  

Mark-and-Sweep



  

Reachability Revisited

● Recall that the goal of our garbage collector is 
to reclaim all unreachable objects.

● Reference counting tries to find unreachable 
objects by finding objects with no incoming 
references.

● Imprecise because we forget which references 
those are.



  

Mark-and-Sweep: The Intuition

● Intuition: Given knowledge of what's immediately 
accessible, find everything reachable in the program.

● The root set is the set of memory locations in the 
program that are known to be reachable.

● such as?

● Any objects reachable from the root set are 
reachable.

● Any objects not reachable from the root set are not 
reachable.

● Do a graph search starting at the root set!



  

Mark-and-Sweep: The Algorithm

● Mark-and-sweep runs in two phases.

● Marking phase: Find reachable objects.

● Add the root set to a worklist.

● While the worklist isn't empty:

– Remove an object from the worklist.

– If it is not marked, mark it and add to the worklist all objects reachable 
from that object.

● Sweeping phase: Reclaim free memory.

● For each allocated object:

– If that object isn't marked, reclaim its memory.

– If the object is marked, unmark it (so on the next mark-and-sweep 
iteration we have to mark it again).
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Implementing Mark-and-Sweep

● The mark-and-sweep algorithm, as described, 
has two serious problems.

● Runtime proportional to number of allocated 
objects.

● Sweep phase visits all objects to free them or clear 
marks.

● Work list requires lots of memory.

● Amount of space required could potentially be as 
large as all of memory.

● Can't preallocate this space!



  

The Key Idea

● During a mark-and-sweep collection, every allocated 
block must be in exactly one of four states:

● Marked: This object is known to be reachable.

● Enqueued: This object is in the worklist.

● Unknown: This object has not yet been seen.

● Deallocated: This object has already been freed.

● Augment every allocated block with two bits to encode 
which of these four states the object is in.

● Maintain doubly-linked lists of all the objects in each of 
these states.



  

Baker's Algorithm

● Move all of the root set to the enqueued list.

● While the enqueued list is not empty:

● Move the first object from the enqueued list to the marked list.

● For each unknown object referenced, add it to the enqueued list.

● At this point, everything reachable is in marked and 
everything unreachable is in unknown.

● Concatenate the unknown and deallocated lists

● Deallocates all garbage in O(1).

● Move everything from the marked list to the unknown list.

● Can be done in O(1).

● Indicates objects again must be proven reachable on next scan.



  

One Last Detail

● But wait – if we're already out of memory, how do we build 
these linked lists?

● Idea: Since every object can only be in one linked list, embed 
the next and previous pointers into each allocated block.
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Analysis of Mark-and-Sweep

● Advantages:

● Precisely finds exactly the reachable objects.

● Using Baker's algorithm, runs in time proportional to 
the number of reachable objects.

● Disadvantages:

● Stop-the-world approach may introduce huge pause 
times.

● Linked list / state information in each allocated 
block uses lots of memory per object.
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Improving Performance

● There are many ways to improve a program's performance, 
some of which can be improved by a good garbage collector:

● Increasing locality.

● Memory caches are often designed to hold adjacent memory 
locations.

● Placing objects consecutively in memory can improve performance 
by reducing cache misses.

● Increasing allocation speed.

● Many languages (Java, Haskell, Python, etc.) allocate objects 
frequently.

● Speeding up object allocation can speed up program execution.



  

Increasing Locality

● Idea: When doing garbage collection, move all 
objects in memory so that they are adjacent to one 
another.

● This is called compaction.

● Ideally, move objects that reference one another 
into adjacent memory locations.

● Garbage collector must update all pointers in all 
objects to refer to the new object locations.

● Could you do this in Java?

● Could you do this in C++?



  

Increasing Allocation Speed

● Typically implementations of malloc and free 

use free lists, linked lists of free memory blocks.

● Allocating an object requires following these 
pointers until a suitable object is found.

● Usually fast, but at least 10 assembly instructions.

● Contrast with stack allocation – just one assembly 
instruction!

● Can we somehow get the performance speed of 
the stack for dynamic allocation?
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Stop-and-Copy in Detail
● Partition memory into two regions: the old space and the new 

space.

● Keep track of the next free address in the new space.

● To allocate n bytes of memory:

● If n bytes space exist at the free space pointer, use those bytes and 
advance the pointer.

● Otherwise, do a copy step.

● To execute a copy step:

● For each object in the root set:

– Copy that object over to the start of the old space.

– Recursively copy over all objects reachable from that object.

● Adjust the pointers in the old space and root set to point to new 
locations.

● Exchange the roles of the old and new spaces.



  

Implementing Stop and Copy

● The only tricky part about stop-and-copy is adjusting the 
pointers in the copied objects correctly.

● Idea: Have each object contain a extra space for a 
forwarding pointer.

● To clone an object:

● First, do a complete bitwise copy of the object.

– All pointers still point to their original locations.

● Next, set the forwarding pointer of the original object to point to 
the new object.

● Finally, after cloning each object, for each pointer:

● Follow the pointer to the object it references.

● Replace the pointer with the pointee's forwarding pointer.
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Analysis of Stop-and-Copy

● Advantages:

● Implementation simplicity (compared to mark-and-
sweep).

● Fast memory allocation; using OS-level tricks, can 
allocate in a single assembly instruction.

● Excellent locality; depth-first ordering of copied objects 
places similar objects near each other.

● Disadvantages:

● Requires half of memory to be free at all times.

● Collection time proportional to number of bytes used by 
objects.
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The Best of All Worlds

● The best garbage collectors in use today are 
based on a combination of smaller garbage 
collectors.

● Each garbage collector is targeted to reclaim 
specific types of garbage.

● Usually has some final “fallback” garbage 
collector to handle everything else.



  

Objects Die Young

● The Motto of Garbage Collection: Objects Die 
Young.

● Most objects have extremely short lifetimes.

● Objects allocated locally in a function.

● Temporary objects used to construct larger objects.

● Optimize garbage collection to reclaim young 
objects rapidly while spending less time on 
older objects.



  

Generational Garbage Collection

● Partition memory into several “generations.”

● Objects are always allocated in the first 
generation.

● When the first generation fills up, garbage collect 
it.

● Runs quickly; collects only a small region of memory.

● Move objects that survive in the first generation 
long enough into the next generation.

● When no space can be found, run a full (slower) 
garbage collection on all of memory.
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HotSpot Garbage Collection

● New objects are allocated using a modified stop-and-
copy collector in the Eden space.

● When Eden runs out of space, the stop-and-copy 
collector moves its elements to the survivor space.

● Objects that survive long enough in the survivor 
space become tenured and are moved to the 
tenured space.

● When memory fills up, a full garbage collection 
(perhaps mark-and-sweep) is used to garbage-collect 
the tenured objects.



  

Next Time

● Final Code Optimization

● Instruction scheduling.

● Locality optimizations.

● Where to Go From Here

● Final Thoughts
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