

Garbage Collection

Runtime Memory Management

● Most constructs in a programming language
need memory.

● Some need a fixed amount of memory

● (such as?)

● Some require a variable amount of memory:

● Local variables

● Objects

● Arrays

● Strings

Memory Management So Far

● Some memory is preallocated and persists
throughout the program:

● Global variables, virtual function tables, executable code,
etc.

● Some memory is allocated on the runtime stack:

● Local variables, parameters, temporaries.

● Some memory is allocated in the heap:

● Arrays, objects.

● Memory management for the first two is trivial.

● How do we manage heap-allocated memory?

Manual Memory Management

● Option One: Have the programmer handle
allocation and deallocation of dynamic memory.

● Approach used in C, C++.

● Advantages:

● Programmer can exercise precise control over
memory usage.

● Disadvantages:

● Programmer has to exercise precise control over
memory usage.

Strengths of Manual Management

● Comparatively easy to implement.

● “Just” need a working memory manager.

● Allows programmers to make aggressive
performance optimizations.

● Programmer can choose allocation scheme that
achieves best performance.

Problems with Manual Management

● Easily leads to troublesome bugs:

● Memory leaks where resources are never freed.

● Double frees where a resource is freed twice
(major security risk).

● Use-after-frees where a deallocated resource is
still used (major security risk).

● Programming languages with manual memory
management are almost always not type-safe.

Automatic Memory Management

● Idea: Have the runtime environment automatically
reclaim memory.

● Objects that won't be used again are called garbage.

● Reclaiming garbage objects automatically is called
garbage collection.

● Advantages:

● Programmer doesn't have to reclaim unused resources.

● Disadvantages:

● Programmer can't reclaim unused resources.

Preliminaries

What is Garbage?

● An object is called garbage at some point during
execution if it will never be used again.

● What is garbage at the indicated points?

What is Garbage?

● An object is called garbage at some point during
execution if it will never be used again.

● What is garbage at the indicated points?

int main() {

 Object x, y;

 x = new Object();

 y = new Object();

 /* Point A */

 x.doSomething();

 y.doSomething();

 /* Point B */

 y = new Object();

 /* Point C */
}

Approximating Garbage

● In general, it is undecidable whether an object is
garbage.

● Need to rely on a conservative approximation.

● An object is reachable if it can still be referenced by the
program.

● Goal for today: detect and reclaim unreachable objects.

● This does not prevent memory leaks!

● Many reachable objects are never used again.

● It is very easy to have memory leaks in garbage-collected
languages.

● Interesting read: “Low-Overhead Memory Leak
Detection Using Adaptive Statistical Profiling” by Chilimbi
and Hauswirth.

Assumptions for Today

● Assume that, at runtime, we can find all existing
references in the program.

● Cannot fabricate a reference to an existing object
ex nihilo.

● Cannot cast pointers to integers or vice-versa.

● Examples: Java, Python, JavaScript, PHP, etc.

● Non-examples: C, C++

● Advance knowledge of references allows for
precise introspection at runtime.

Types of Garbage Collectors

● Incremental vs stop-the-world:

● An incremental collector is one that runs concurrently with the
program.

● A stop-the-world collector pauses program execution to look for
garbage.

● Which is (generally) more precise?

● Which would you use in a nuclear reactor control system?

● Compacting vs non-compacting:

● A compacting collector is one that moves objects around in
memory.

● A non-compacting collector is one that leaves all objects where
they originated.

● Which (generally) spends more time garbage collecting?

● Which (generally) leads to faster program execution?

Reference Counting

Reference Counting

● A simple framework for garbage collection.

● Though it has several serious weaknesses!

● Idea: Store in each object a reference count (refcount)
tracking how many references exist to the object.

● Creating a reference to an object increments its refcount.

● Removing a reference to an object decrements its refcount.

● When an object has zero refcount, it is unreachable and
can be reclaimed.

● This might decrease other objects' counts and trigger more
reclamations.

Reference Counting in Action

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;
 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;
 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;
 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 0

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;
 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 0

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;
 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;
 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;
 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;
 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

0

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;
 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

0

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;
 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

1

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

1

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

1tail

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

1tail

0

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

1tail

0

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

1tail

1

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;
 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

1tail

1

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;
 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

1tail

1

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;
 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

2tail

1

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

2tail

1

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

2tail

1

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

2tail

2

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

2tail

2

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

2tail

2

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

2tail

1

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

2tail

1

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

1tail

1

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

1tail

1

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

1tail

1

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

1tail

0

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

1tail

0
Reclaimed!

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

1tail

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;
}

head 1

mid

1tail

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;
}

head 1

mid

1tail

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;
}

head 0

mid

1tail

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;
}

head 0

mid

1tail

Reclaimed!

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;
}

head

mid

1tail

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;
}

head

mid

0tail

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;
}

head

mid

0tail
Reclaimed!

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;
}

head

mid

tail

Reference Counting Details

● When creating an object, set its refcount to 0.

● When creating a reference to an object,
increment its refcount.

● When removing a reference from an object:

● Decrement its refcount.

● If its refcount is zero:

– Remove all outgoing references from that object.

– Reclaim the memory for that object.

One Major Problem

One Major Problem

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 tail.next = head;

 head = null;

 mid = null;

 tail = null;

}

One Major Problem

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;
 LinkedList mid = new LinkedList;
 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 tail.next = head;

 head = null;

 mid = null;

 tail = null;

}

One Major Problem

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;
 LinkedList mid = new LinkedList;
 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 tail.next = head;

 head = null;

 mid = null;

 tail = null;

}

head 1

mid

1tail

1

One Major Problem

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;
 mid.next = tail;

 tail.next = head;

 head = null;

 mid = null;

 tail = null;

}

head 1

mid

1tail

1

One Major Problem

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;
 mid.next = tail;

 tail.next = head;

 head = null;

 mid = null;

 tail = null;

}

head 1

mid

1tail

1

One Major Problem

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;
 mid.next = tail;

 tail.next = head;

 head = null;

 mid = null;

 tail = null;

}

head 1

mid

2tail

1

One Major Problem

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;
 tail.next = head;

 head = null;

 mid = null;

 tail = null;

}

head 1

mid

2tail

1

One Major Problem

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;
 tail.next = head;

 head = null;

 mid = null;

 tail = null;

}

head 1

mid

2tail

1

One Major Problem

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;
 tail.next = head;

 head = null;

 mid = null;

 tail = null;

}

head 1

mid

2tail

2

One Major Problem

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 tail.next = head;

 head = null;

 mid = null;

 tail = null;

}

head 1

mid

2tail

2

One Major Problem

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 tail.next = head;

 head = null;

 mid = null;

 tail = null;

}

head 1

mid

2tail

2

One Major Problem

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 tail.next = head;

 head = null;

 mid = null;

 tail = null;

}

head 2

mid

2tail

2

One Major Problem

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 tail.next = head;

 head = null;
 mid = null;

 tail = null;

}

head 2

mid

2tail

2

One Major Problem

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 tail.next = head;

 head = null;
 mid = null;

 tail = null;

}

head 2

mid

2tail

2

One Major Problem

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 tail.next = head;

 head = null;
 mid = null;

 tail = null;

}

head 1

mid

2tail

2

One Major Problem

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 tail.next = head;

 head = null;

 mid = null;
 tail = null;

}

head 1

mid

2tail

2

One Major Problem

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 tail.next = head;

 head = null;

 mid = null;
 tail = null;

}

head 1

mid

2tail

2

One Major Problem

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 tail.next = head;

 head = null;

 mid = null;
 tail = null;

}

head 1

mid

1tail

2

One Major Problem

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 tail.next = head;

 head = null;

 mid = null;

 tail = null;
}

head 1

mid

1tail

2

One Major Problem

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 tail.next = head;

 head = null;

 mid = null;

 tail = null;
}

head 1

mid

1tail

2

One Major Problem

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 tail.next = head;

 head = null;

 mid = null;

 tail = null;
}

head 1

mid

1tail

1

One Major Problem

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 tail.next = head;

 head = null;

 mid = null;

 tail = null;

}

head 1

mid

1tail

1

One Major Problem

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 tail.next = head;

 head = null;

 mid = null;

 tail = null;

}

head 1

mid

1tail

1Problem?

Anoop Sarkar

Reference Cycles

● A reference cycle is a set of objects that
cyclically refer to one another.

● Because all the objects are referenced, all have
nonzero refcounts and are never reclaimed.

● Issue: Refcount tracks number of references,
not number of reachable references.

● Major problems in languages/systems that use
reference counting:

● e.g. Perl, Firefox 2.

Analysis of Reference Counting

● Advantages:

● Simple to implement.

● Can be implemented as a library on top of explicit
memory management (see C++ shared_ptr).

● Disadvantages:

● Fails to reclaim all unreachable objects.

● Can be slow if a large collection is initiated.

● Noticeably slows down assignments.

Mark-and-Sweep

Reachability Revisited

● Recall that the goal of our garbage collector is
to reclaim all unreachable objects.

● Reference counting tries to find unreachable
objects by finding objects with no incoming
references.

● Imprecise because we forget which references
those are.

Mark-and-Sweep: The Intuition

● Intuition: Given knowledge of what's immediately
accessible, find everything reachable in the program.

● The root set is the set of memory locations in the
program that are known to be reachable.

● such as?

● Any objects reachable from the root set are
reachable.

● Any objects not reachable from the root set are not
reachable.

● Do a graph search starting at the root set!

Mark-and-Sweep: The Algorithm

● Mark-and-sweep runs in two phases.

● Marking phase: Find reachable objects.

● Add the root set to a worklist.

● While the worklist isn't empty:

– Remove an object from the worklist.

– If it is not marked, mark it and add to the worklist all objects reachable
from that object.

● Sweeping phase: Reclaim free memory.

● For each allocated object:

– If that object isn't marked, reclaim its memory.

– If the object is marked, unmark it (so on the next mark-and-sweep
iteration we have to mark it again).

Mark-and-Sweep In Action

Mark-and-Sweep In Action

Mark-and-Sweep In Action

Root Set

Mark-and-Sweep In Action

Root Set

Work List

Mark-and-Sweep In Action

Root Set

Work List

Mark-and-Sweep In Action

Root Set

Work List

Mark-and-Sweep In Action

Root Set

Work List

mark

Mark-and-Sweep In Action

mark

Root Set

Work List

Mark-and-Sweep In Action

mark

Root Set

Work List

Mark-and-Sweep In Action

mark

Root Set

Work List

Mark-and-Sweep In Action

mark

Root Set

Work List

mark

Mark-and-Sweep In Action

mark

markRoot Set

Work List

Mark-and-Sweep In Action

mark

markRoot Set

Work List

Mark-and-Sweep In Action

mark

markRoot Set

Work List

Mark-and-Sweep In Action

mark

markRoot Set

Work List

mark

Mark-and-Sweep In Action

mark

markRoot Set

Work List

mark

Mark-and-Sweep In Action

mark

markRoot Set

mark

Work List

Mark-and-Sweep In Action

mark

markRoot Set

mark

Work List

Mark-and-Sweep In Action

mark

markRoot Set

mark

Work List

Mark-and-Sweep In Action

mark

markRoot Set

mark

Work List

mark

Mark-and-Sweep In Action

mark

markRoot Set

mark

Work List

mark

Mark-and-Sweep In Action

mark

mark

mark

Root Set

mark

Work List

Mark-and-Sweep In Action

mark

mark

mark

Root Set

mark

Work List

Mark-and-Sweep In Action

mark

mark

mark

Root Set

mark

Work List

Mark-and-Sweep In Action

mark

mark

mark

Root Set

mark

Work List

mark

Mark-and-Sweep In Action

mark

mark

mark

Root Set

mark

Work List

mark

Mark-and-Sweep In Action

mark

mark

mark

Root Set

mark

mark

Work List

Mark-and-Sweep In Action

mark

mark

mark

Root Set

mark

mark

Work List

Mark-and-Sweep In Action

mark

mark

mark

Root Set

mark

mark

Work List

Mark-and-Sweep In Action

mark

mark

mark

Root Set

mark

mark

Work List

Reclaimed!

Reclaimed!

Mark-and-Sweep In Action

mark

mark

mark

Root Set

mark

mark

Work List

Mark-and-Sweep In Action

Root Set

Work List

Mark-and-Sweep In Action

Implementing Mark-and-Sweep

● The mark-and-sweep algorithm, as described,
has two serious problems.

● Runtime proportional to number of allocated
objects.

● Sweep phase visits all objects to free them or clear
marks.

● Work list requires lots of memory.

● Amount of space required could potentially be as
large as all of memory.

● Can't preallocate this space!

The Key Idea

● During a mark-and-sweep collection, every allocated
block must be in exactly one of four states:

● Marked: This object is known to be reachable.

● Enqueued: This object is in the worklist.

● Unknown: This object has not yet been seen.

● Deallocated: This object has already been freed.

● Augment every allocated block with two bits to encode
which of these four states the object is in.

● Maintain doubly-linked lists of all the objects in each of
these states.

Baker's Algorithm

● Move all of the root set to the enqueued list.

● While the enqueued list is not empty:

● Move the first object from the enqueued list to the marked list.

● For each unknown object referenced, add it to the enqueued list.

● At this point, everything reachable is in marked and
everything unreachable is in unknown.

● Concatenate the unknown and deallocated lists

● Deallocates all garbage in O(1).

● Move everything from the marked list to the unknown list.

● Can be done in O(1).

● Indicates objects again must be proven reachable on next scan.

One Last Detail

● But wait – if we're already out of memory, how do we build
these linked lists?

● Idea: Since every object can only be in one linked list, embed
the next and previous pointers into each allocated block.

One Last Detail

● But wait – if we're already out of memory, how do we build
these linked lists?

● Idea: Since every object can only be in one linked list, embed
the next and previous pointers into each allocated block.

Object
Fields

Vtable *

Previous

Next

Object
Fields

Vtable *

Previous

Next

Object
Fields

Vtable *

Previous

Next

State State State

Analysis of Mark-and-Sweep

● Advantages:

● Precisely finds exactly the reachable objects.

● Using Baker's algorithm, runs in time proportional to
the number of reachable objects.

● Disadvantages:

● Stop-the-world approach may introduce huge pause
times.

● Linked list / state information in each allocated
block uses lots of memory per object.

Stop-and-Copy

Improving Performance

● There are many ways to improve a program's performance,
some of which can be improved by a good garbage collector:

● Increasing locality.

● Memory caches are often designed to hold adjacent memory
locations.

● Placing objects consecutively in memory can improve performance
by reducing cache misses.

● Increasing allocation speed.

● Many languages (Java, Haskell, Python, etc.) allocate objects
frequently.

● Speeding up object allocation can speed up program execution.

Increasing Locality

● Idea: When doing garbage collection, move all
objects in memory so that they are adjacent to one
another.

● This is called compaction.

● Ideally, move objects that reference one another
into adjacent memory locations.

● Garbage collector must update all pointers in all
objects to refer to the new object locations.

● Could you do this in Java?

● Could you do this in C++?

Increasing Allocation Speed

● Typically implementations of malloc and free

use free lists, linked lists of free memory blocks.

● Allocating an object requires following these
pointers until a suitable object is found.

● Usually fast, but at least 10 assembly instructions.

● Contrast with stack allocation – just one assembly
instruction!

● Can we somehow get the performance speed of
the stack for dynamic allocation?

The Stop-and-Copy Collector

The Stop-and-Copy Collector

The Stop-and-Copy Collector

All of memory

The Stop-and-Copy Collector

The Stop-and-Copy Collector

The Stop-and-Copy Collector

New Space Old Space

The Stop-and-Copy Collector

The Stop-and-Copy Collector

Free
Space

The Stop-and-Copy Collector

Free
Space

The Stop-and-Copy Collector

Free
Space

The Stop-and-Copy Collector

Free
Space

The Stop-and-Copy Collector

Free
Space

The Stop-and-Copy Collector

Free
Space

The Stop-and-Copy Collector

Free
Space

The Stop-and-Copy Collector

Free
Space

The Stop-and-Copy Collector

Free
Space

The Stop-and-Copy Collector

Free
Space

The Stop-and-Copy Collector

Free
Space

The Stop-and-Copy Collector

Free
Space

Out of space!

The Stop-and-Copy Collector

Free
Space

Root Set

The Stop-and-Copy Collector

Free
Space

Root Set

The Stop-and-Copy Collector

Free
Space

Root Set

The Stop-and-Copy Collector

Free
Space

Root Set

The Stop-and-Copy Collector

Free
Space

Root Set

The Stop-and-Copy Collector

Free
Space

Root Set

The Stop-and-Copy Collector

Root Set

Free
Space

The Stop-and-Copy Collector

Root Set

Free
Space

The Stop-and-Copy Collector

Root Set

Free
Space

The Stop-and-Copy Collector

Free
Space

The Stop-and-Copy Collector

Free
Space

The Stop-and-Copy Collector

Free
Space

The Stop-and-Copy Collector

Free
Space

The Stop-and-Copy Collector

Free
Space

The Stop-and-Copy Collector

Free
Space

The Stop-and-Copy Collector

Free
Space

Root Set

The Stop-and-Copy Collector

Free
Space

Root Set

The Stop-and-Copy Collector

Free
Space

Root Set

The Stop-and-Copy Collector

Free
Space

Root Set

The Stop-and-Copy Collector

Free
Space

Root Set

The Stop-and-Copy Collector

Free
Space

Root Set

The Stop-and-Copy Collector

Root Set

Free
Space

The Stop-and-Copy Collector

Root Set

Free
Space

The Stop-and-Copy Collector

Root Set

Free
Space

The Stop-and-Copy Collector

Free
Space

Stop-and-Copy in Detail
● Partition memory into two regions: the old space and the new

space.

● Keep track of the next free address in the new space.

● To allocate n bytes of memory:

● If n bytes space exist at the free space pointer, use those bytes and
advance the pointer.

● Otherwise, do a copy step.

● To execute a copy step:

● For each object in the root set:

– Copy that object over to the start of the old space.

– Recursively copy over all objects reachable from that object.

● Adjust the pointers in the old space and root set to point to new
locations.

● Exchange the roles of the old and new spaces.

Implementing Stop and Copy

● The only tricky part about stop-and-copy is adjusting the
pointers in the copied objects correctly.

● Idea: Have each object contain a extra space for a
forwarding pointer.

● To clone an object:

● First, do a complete bitwise copy of the object.

– All pointers still point to their original locations.

● Next, set the forwarding pointer of the original object to point to
the new object.

● Finally, after cloning each object, for each pointer:

● Follow the pointer to the object it references.

● Replace the pointer with the pointee's forwarding pointer.

Forwarding Pointers

Forwarding Pointers

Root Set

Forwarding Pointers

Root Set

Forwarding Pointers

Root Set

Forwarding Pointers

Root Set

Forwarding Pointers

Root Set

Forwarding Pointers

Root Set

Forwarding Pointers

Root Set

Forwarding Pointers

Root Set

Forwarding Pointers

Root Set

Forwarding Pointers

Root Set

Forwarding Pointers

Root Set

Analysis of Stop-and-Copy

● Advantages:

● Implementation simplicity (compared to mark-and-
sweep).

● Fast memory allocation; using OS-level tricks, can
allocate in a single assembly instruction.

● Excellent locality; depth-first ordering of copied objects
places similar objects near each other.

● Disadvantages:

● Requires half of memory to be free at all times.

● Collection time proportional to number of bytes used by
objects.

Hybrid Approaches

The Best of All Worlds

● The best garbage collectors in use today are
based on a combination of smaller garbage
collectors.

● Each garbage collector is targeted to reclaim
specific types of garbage.

● Usually has some final “fallback” garbage
collector to handle everything else.

Objects Die Young

● The Motto of Garbage Collection: Objects Die
Young.

● Most objects have extremely short lifetimes.

● Objects allocated locally in a function.

● Temporary objects used to construct larger objects.

● Optimize garbage collection to reclaim young
objects rapidly while spending less time on
older objects.

Generational Garbage Collection

● Partition memory into several “generations.”

● Objects are always allocated in the first
generation.

● When the first generation fills up, garbage collect
it.

● Runs quickly; collects only a small region of memory.

● Move objects that survive in the first generation
long enough into the next generation.

● When no space can be found, run a full (slower)
garbage collection on all of memory.

Garbage Collection in Java

Garbage Collection in Java

Eden

Garbage Collection in Java

Eden

Survivor Objects

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

0 0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

0 0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

0 0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

0 0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

0 0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

0 0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

0 0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

0 0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

0 0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

0 0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

10

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

1

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

1 0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

1 0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

1 0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

1 0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

1 0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

1 0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

1 0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

1 0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

1 0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

0

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

1

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

01

Garbage Collection in Java

Eden

Survivor Objects

Tenured Objects

01

HotSpot Garbage Collection

● New objects are allocated using a modified stop-and-
copy collector in the Eden space.

● When Eden runs out of space, the stop-and-copy
collector moves its elements to the survivor space.

● Objects that survive long enough in the survivor
space become tenured and are moved to the
tenured space.

● When memory fills up, a full garbage collection
(perhaps mark-and-sweep) is used to garbage-collect
the tenured objects.

Next Time

● Final Code Optimization

● Instruction scheduling.

● Locality optimizations.

● Where to Go From Here

● Final Thoughts

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240

