
Why you should take a
Compilers course

CMPT 379: Compilers

Instructor: Anoop Sarkar
anoopsarkar.github.io/compilers-class

IN1: Evangelize Compilers

High Level Programming Languages

2

Programming Languages
C, C++, Python, Java, …

Natural Languages
English, Korean, Tagalog, Warlpiri, …

“If you don't know how compilers work, then you
don't know how computers work.”

“If you're not 100% sure whether you know how
compilers work, then you don't know how they
work.”

http://steve-yegge.blogspot.ca/2007/06/rich-programmer-food.html

Rich Programmer Food (Steve Yegge)

4

Rich Programmer Food (Steve Yegge)

5

“In fact, Compiler Construction is, in my own humble and probably

embarrassingly wrong opinion, the second most important CS class
you can take in an undergraduate computer science program.”

Rich Programmer Food (Steve Yegge)

• “I'm not saying other CS courses aren't important,
incidentally

• Operating Systems, Machine Learning, Distributed
Computing and Algorithm Design are all arguably just as
important as Compiler Construction

• Except that you can take them all and still not know how
computers work …”

6

What do you learn?

1. Lexing – lexical analysis. Recognizing the tokens of the language.

2. Parsing – syntactic analysis, aka the structure of the program.

3. Type analysis – constraints on using the language.

4. Code generation and optimization.

7

Letters and words

Sentences

Semantics

Map to the real world

Rich Programmer Food (Steve Yegge)

• Situation 1: How do you auto-format source code of a Java library
with >1M lines of code using your company’s formatting guidelines?

• Situation 2: Your company decides to do automatic documentation
extraction from Javascript code. How do you write your own jsdoc
extractor?

8

Rich Programmer Food (Steve Yegge)

• Situation 3: You must refactor a massive codebase in C++ in a non-trivial
way, e.g. go from 32-bit to 64-bit. What do you do?

• Situation 4: You must write a syntax highlighter for a web tool that deals
with 5-8 programming languages.

• Situation 5: You must communicate with a new router that has a telnet
interface and a proprietary command language. You need to parse the
responses and produce new commands.

9

Rich Programmer Food (Steve Yegge)

• Situation 6: The “software engineers” at your company have decided to
redesign the entire code base to make it easier to add to the codebase.
You have to write them a tool to ensure code maintenance does not get
worse.

• Situation 7: In order to remove a security hole you must make a set of
non-trivial changes to the code to replace one idiom with another in
your entire codebase. (Look up CVEs)

10

http://cve.mitre.org/

Do you really know how programming languages
work?

11

void send (char *to, char *from, int count)

{

while (count-- > 0)

*to++ = *from++;

}

void send2 (char *to, char *from, int count)

{

int n = (count+7)/8;

switch (count % 8) {

case 0: do { *to++ = *from++;

case 7: *to++ = *from++;

case 6: *to++ = *from++;

case 5: *to++ = *from++;

case 4: *to++ = *from++;

case 3: *to++ = *from++;

case 2: *to++ = *from++;

case 1: *to++ = *from++;

} while(--n > 0);

}

}
12

Compare send and send2

• Q1: Is this valid C syntax?

• Q2: Why re-write send (2 lines of code) as send2 (10 lines of code). Is
there a reasonable purpose behind send2?

13

Why should you take Compilers?

• Understand how programming languages work from the inside-out

• Design and build your own programming language (video games, AI,
robotics, security, GPUs, concurrency)

• Contribute to development of an existing programming language e.g.
faster javascript in a web browser

14

Why should you take Compilers?

• Write tools that can transform programs into other programs

• Understand parsing algorithms that take text input and transform it
into tree structures

• Understand code generation and code optimization

• Be fluent in compiler tools like lex, yacc, LLVM

15

Extra Slides

16

Compare send and send2

• Q1: Is this valid C syntax?

• Write down send2 with a main function and compile it. Does it work?

• Examine the C language specification for switch and while loops. Does the
code match the specification?

17

Compare send and send2

• Q1: Is this valid C syntax?

• C language specification

18

selection_statement -> SWITCH '(' expression ')' statement

iteration_statement -> WHILE '(' expression ')' statement

| DO statement WHILE '(' expression ')' ';'

statement -> labeled_statement

labeled_statement -> CASE constant_expression ':' statement

Compare send and send2

• Q2: Why re-write send (2 lines of code) as send2 (10 lines of code). Is
there a reasonable purpose behind send2?

• Compile and run two programs: one with send and one with send2

• Are they executing the same instructions?

• Are they executing the instructions the same number of times?

• Is one faster than the other?

19

Education ≠ Real Life?

20

Where: TASC1 9204
When: Tuesday, April 13, 2010 @ 1:00 PM
Who: Andrew Brownsword, Chief Architect from Electronic Arts BlackBox

Talk info:
--
Trajectories in Computing

Andrew looks at where computer hardware has been, how it has evolved to the
present day, where it will go next, and what might happen after that. Along
side the hardware trajectory he considers where programming has come from,
where it has gone, and where it needs to go now and into the future. His
perspective is solidly that of a practical and pragmatic industry software
engineer, and his goal is to shamelessly interest everyone in how to help
make his work easier in the future.

Quote from Andrew:
“I wish I had taken
Compilers during my
undergrad degree.”

‘I talked about the compilers project at almost every
interview I've had.’

-- Student who took CMPT 379 in Fall 2011
(now employed in the Bay Area)

21

Rich Programmer Food (Steve Yegge)

22

“In fact, Compiler Construction is, in my own humble and probably

embarrassingly wrong opinion, the second most important CS class
you can take in an undergraduate computer science program.”

Steve’s most important CS class:
“Typing 101. Duh”

	Slide 1: Why you should take a Compilers course
	Slide 2: High Level Programming Languages
	Slide 4: Rich Programmer Food (Steve Yegge)
	Slide 5: Rich Programmer Food (Steve Yegge)
	Slide 6: Rich Programmer Food (Steve Yegge)
	Slide 7: What do you learn?
	Slide 8: Rich Programmer Food (Steve Yegge)
	Slide 9: Rich Programmer Food (Steve Yegge)
	Slide 10: Rich Programmer Food (Steve Yegge)
	Slide 11: Do you really know how programming languages work?
	Slide 12
	Slide 13: Compare send and send2
	Slide 14: Why should you take Compilers?
	Slide 15: Why should you take Compilers?
	Slide 16: Extra Slides
	Slide 17: Compare send and send2
	Slide 18: Compare send and send2
	Slide 19: Compare send and send2
	Slide 20: Education ≠ Real Life?
	Slide 21
	Slide 22: Rich Programmer Food (Steve Yegge)

