[CFG1: Intro to CFGs]

Context-Free Grammars

CMPT 379: Compilers
Instructor: Anoop Sarkar
anoopsarkar.github.io/compilers-class

Parsing

source |

program

String of
characters

token
Lexical Parser parse
Analyzer next() tree
flex: yylex()
Lexical Syntax
Errors Errors

Later Stages

Parsing

* Every possible token sequence is not a valid program

* Parser distinguishes between valid and invalid programs

* We need
* A language for describing valid sequence of tokens
* A method for distinguishing valid from invalid programs

* Provide the program structure for a valid token sequence

Context-free Grammars (CFGs) o,

(while EXP
(i¢ EXP
* Programming languages have recursive structure (white EXP
: EXP
* An EXP is ... EXP EXP)
EXP EXP)
EXP
EXP)
while
)it
EXP

* Context Free Grammars are natural notation for the recursive
structures we find in programming languages

* Finite state automata cannot handle nested parentheses

Context-free Grammars (CFGs)

* A CFG consists of

* Aset of terminals: T (input symbols) o
Rule application:

Replace with

* A set on non-terminals: N

* A start symbol: N

A set of rules/productions:

Context-free Grammars (CFGs)

Q: Modify this CFG to use the
. alphabet { (% ‘), 5V, [T }
| = {(l)l | i > 0 } where opening and closing
parentheses must of the
same type. So “({[()]})” is valid

Q: Does the string “()(())” but “(}” is invalid

belong to this language? CEG Rules:

Non-deterministic S— l(l S l)’ N = {S}

choice of S rule Ny
S— € T={()}

Context-free Grammars (CFGs)

1. Begin with string that has only start symbol

2. Replace any non-terminal X in the string by the right-hand side of
some production

3. Repeat (2) until there is no non-terminals

:>I"2

Non-deterministic
choice of S rule

Derivation and Parse Tree

* A derivation is a sequence of rule applications
= .. =2>..=..=

 Aderivation can be drawn as a
e Start symbol is the tree’s root
* For a production add

children to node

Derivation and Parse Tree

S=M(5)=R((5)) =200)

s
i 5="(()

Q: Write down the derivation and
parse tree for the input string

“({[13)” using your grammar for
guestion on slide 6

Language of CFGs

Let G be a context free grammar with start symbol S,
and terminals

The language of G is:

Arithmetic Expressions

*E—>E+E
*E>E*E
*E—>(E)
*E—>-E

E—id

Derivation for

id+id * id
Leaf nodes: terminals

E=F+E Interior nodes: non-terminals
=id+E c
= id+E*E /y\
—id+id * E E + E
idvidria | I

d g o+

Notation: ‘ ‘
E=>*id+id *id id id

12

Leftmost derivation for

|d + |d * |d Parse tree disambiguates operator precedence:
(id+id)*id vs id+(id*id)

E=E*E
— E+E*E /T\
—id+E*E

E * E
=id+id * F /’\ ‘
—id +id * id B+ F d

13

Rightmost derivation for
id+id * id

E=E*E
=E*id
=E+E*id
= F+id *id

= id +id * id

Q: Write down the rightmost derivation for same

grammar and input to get the parse tree in slide 12

E
E * E
S |
E 4 E id
| |
id id

14

Rightmost vs. Leftmost Derivation

* Rightmost and leftmost derivations have the same parse tree
» Every parse tree has a rightmost derivation
* And every parse tree has an equivalent leftmost derivation

* Leftmost / Rightmost derivations are important in resolving ambiguity

Writing a CFG for a programming language

* First write (or read) a reference grammar of what you want to be
valid programs

* For now, we only worry about the structure, so the reference
grammar might choose to over-generate in certain cases

* e.g.bool x = 20;
* Convert the reference grammar to a CFG

* Use actions for each CFG rule to produce the output

Actions in a CFG: Arithmetic Expressions

e E o = +$3}
[E[-IEIFIEK[SS|=[S 1| [$3]} 23 E
CE—>(E){$$=52) %
*E—>-E{SS$S=-1*S2} ° E* 5
|
*E—>id{55=51} zi/Jl,\gE id(5)
| |
id(2) id(3)

Q: Draw the parse tree and calculate the output

value using the above CFG & actions for - (2+3)

17

CFG Notation

* Normal CFG notation
ES>E*E
E—>E+E

* Backus Naur notation
E:E*E|E+E ;
(an or-list of right-hand sides)
Also:
E=E “«”E | E “+” E .

