Context-Free Grammars

CMPT 379: Compilers
Instructor: Anoop Sarkar
anoopsarkar.github.io/compilers-class

Parsing

Parsing

- Every possible token sequence is not a valid program
- Parser distinguishes between valid and invalid programs
- We need
- A language for describing valid sequence of tokens
- A method for distinguishing valid from invalid programs
- Provide the program structure for a valid token sequence

Context-free Grammars (CFGs)

(if if EXP then
(while while EXP do
(if if EXP then
(while while EXP do

- Programming languages have recursive structure (wnile while EXP do
- An EXP is ...

if EXP then	while EXP do
EXP	EXP
else	

- Context Free Grammars are natural notation for the recursive structures we find in programming languages
- Finite state automata cannot handle nested parentheses

Context-free Grammars (CFGs)

- A CFG consists of
- A set of terminals: T (input symbols)
- A set on non-terminals: N
- A start symbol: $S \in N$

LHS RHS

- A set of rules/productions: $X \rightarrow Y_{1} \ldots Y_{n}$

$$
X \in N
$$

Rule application:
Replace LHS with RHS

$$
Y_{i} \in N \cup T \cup\{\varepsilon\}
$$

Context-free Grammars (CFGs)

$$
\mathrm{L}=\left\{\left({ }^{i}\right)^{i} \mid i \geq 0\right\}
$$

Q: Does the string " ()$(())$ " belong to this language?

CFG Rules:
Q: Modify this CFG to use the alphabet \{ '(', ')', '\{', '\}, '[', ']' \} where opening and closing parentheses must of the same type. So "(\{[()]\})" is valid but " (\}" is invalid.

Non-deterministic choice of S rule

$$
\begin{aligned}
& S \rightarrow{ }^{\prime}\left(S^{\prime}\right)^{\prime} \\
& S \rightarrow \varepsilon
\end{aligned}
$$

$$
N=\{S\}
$$

$$
\mathrm{T}=\left\{{ }^{\prime}\left({ }^{\prime}, y^{\prime}\right)^{\prime}\right\}
$$

Context-free Grammars (CFGs)

1. Begin with string that has only start symbol S
2. Replace any non-terminal X in the string by the right-hand side of some production $X \rightarrow Y_{1} \ldots Y_{n}$
3. Repeat (2) until there is no non-terminals

Derivation and Parse Tree

- A derivation is a sequence of rule applications

$$
S \Rightarrow \ldots \Rightarrow \ldots \Rightarrow \ldots \Rightarrow \ldots
$$

- A derivation can be drawn as a parse tree
- Start symbol is the tree's root
- For a production $X \rightarrow Y_{1} \ldots Y_{n}$ add children $Y_{1} \ldots Y_{n}$ to node X

Derivation and Parse Tree

$$
S \Rightarrow^{r 1}(S) \Rightarrow^{r 1}((S)) \Rightarrow r^{r 2}(())
$$

Q: Write down the derivation and parse tree for the input string "(\{[]\})" using your grammar for question on slide 6

Language of CFGs

Let G be a context free grammar with start symbol S, and terminals T

The language $L(G)$ of G is:

$$
\begin{array}{ll}
\left\{\alpha_{1} \ldots \alpha_{n} \mid \forall_{i} \alpha_{i} \in T \text { and } S \Rightarrow^{*} \alpha_{1} \ldots \alpha_{n}\right\} & \begin{array}{l}
r 1: S \rightarrow(S) \\
r 2: S \rightarrow \varepsilon
\end{array} \\
L(G)=\{\varepsilon,(),(()),((())), \ldots\} &
\end{array}
$$

Arithmetic Expressions

- $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}$
- $\mathrm{E} \rightarrow \mathrm{E}^{*} \mathrm{E}$
- $\mathrm{E} \rightarrow(\mathrm{E})$
- $\mathrm{E} \rightarrow-\mathrm{E}$
- $\mathrm{E} \rightarrow \mathrm{id}$

Derivation for id + id * id

$$
\begin{array}{ll}
\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E} & \mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} \\
\mathrm{E} \rightarrow \mathrm{E} * \mathrm{E} & \Rightarrow \mathbf{i d}+\mathrm{E} \\
\mathrm{E} \rightarrow(\mathrm{E}) & \Rightarrow \mathbf{i d}+\mathrm{E} * \mathrm{E} \\
\mathrm{E} \rightarrow-\mathrm{E} & \Rightarrow \mathrm{id}+\mathbf{i d} * \mathrm{E} \\
\mathrm{E} \rightarrow \mathrm{id} & \Rightarrow \mathbf{i d} \\
& \Rightarrow \mathbf{i d}+\mathbf{i d} * \mathbf{i d}
\end{array}
$$

```
Notation:
    E ** id + id * id
```


Leaf nodes: terminals

Interior nodes: non-terminals

Leftmost derivation for id + id * id

Parse tree disambiguates operator precedence: (id+id)*id vs id+(id*id)

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{E} \quad \mathrm{E} \Rightarrow \mathrm{E}^{*} \mathrm{E} \\
& \mathrm{E} \rightarrow \mathrm{E}^{*} \mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E}^{*} \mathrm{E} \\
& \mathrm{E} \rightarrow(\mathrm{E}) \\
& E \rightarrow-E \\
& \mathrm{E} \rightarrow \text { id } \quad \Rightarrow \text { id }+ \text { id }^{*} \mathrm{E} \\
& \Rightarrow \mathrm{id}+\mathrm{id} \text { * } \mathrm{id}
\end{aligned}
$$

Rightmost derivation for id + id * id

$$
\begin{array}{ll}
\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E} & \mathrm{E} \Rightarrow \mathrm{E}^{*} \mathrm{E} \\
\mathrm{E} \rightarrow \mathrm{E} * \mathrm{E} & \Rightarrow \mathrm{E} * \mathbf{i d} \\
\mathrm{E} \rightarrow(\mathrm{E}) & \Rightarrow \mathrm{E}+\mathrm{E}^{*} \mathbf{i d} \\
\mathrm{E} \rightarrow-\mathrm{E} & \Rightarrow \mathrm{E}+\mathbf{i d} * \mathbf{i d} \\
\mathrm{E} \rightarrow \text { id } & \Rightarrow \mathbf{i d}+\mathbf{i d}{ }^{*} \mathbf{i d}
\end{array}
$$

 grammar and input to get the parse tree in slide 12

Rightmost vs. Leftmost Derivation

- Rightmost and leftmost derivations have the same parse tree
- Every parse tree has a rightmost derivation
- And every parse tree has an equivalent leftmost derivation
- Leftmost / Rightmost derivations are important in resolving ambiguity

Writing a CFG for a programming language

- First write (or read) a reference grammar of what you want to be valid programs
- For now, we only worry about the structure, so the reference grammar might choose to over-generate in certain cases
- e.g. bool $x=20$;
- Convert the reference grammar to a CFG
- Use actions for each CFG rule to produce the output

Actions in a CFG: Arithmetic Expressions

- $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{F}\{\$ \$=\$ 1+\$ 3\}$

- $\mathrm{E} \rightarrow(\mathrm{E})\{\$ \$=\$ 2\}$
- $\mathrm{E} \rightarrow-\mathrm{E}\{\$ \$=-1 * \$ 2\}$
- $\mathrm{E} \rightarrow \mathrm{id}\{\$ \$=\$ 1\}$

CFG Notation

- Normal CFG notation

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E} * \mathrm{E} \\
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}
\end{aligned}
$$

- Backus Naur notation
$\mathrm{E}: \mathrm{E}$ * $\mathrm{E} \mid \mathrm{E}+\mathrm{E}$;
(an or-list of right-hand sides)
Also:
$\mathrm{E}=\mathrm{E}$ "*" $\mathrm{E} \mid \mathrm{E}$ "+" E .

