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Encoder-Decoder neural nets
• An encoder  takes an input  and encodes it into a hidden representation  

using some parameters . Encoder: 


• An decoder  takes a hidden layer  and decodes it into an output  using 
some parameters . Decoder: 


• The output  should be similar to but not necessarily identical to the true 
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Autoencoder loss
• How much information is lost by going from  to  and then back to ?


• We measure the information loss by representing using  using reconstruction 
log-likelihood


•  measured in nats (bits are base 2, nats are base )


• The loss function for an variational autoencoder is the negative log likelihood 
with a regularizer


• For single data point  we compute the above loss . 


• Total loss for the dataset: 
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Variational autoencoder loss
• Loss function  for datapoint  is


• 


• First term is the expected negative log-likelihood of the data point 


• We want to place the most probability mass on the true output 


• Second term is the regularizer: the Kullback-Leibler divergence between the 
encoder distribution  and 


•  is used to reward "good" values of the hidden representation that are 
efficient, can be sampled from easily and do not memorize the dataset.


•  where  and  is element wise multiplication
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Reparametrize z
• We want to use gradient descent to learn 


• Need to take derivative of  wrt  


• We reparametrize 


•  where  and  is element wise multiplication


• Now we can take derivatives of  wrt  and 


• Output of  is a vector of 's and 's
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Variational autoencoder loss
• The regularizer term keeps the representation of  sufficiently diverse


• Without the regularizer, given large enough  the encoder-decoder would 
simply memorize the entire dataset


• Two different  and  that are actually very close to each other would end up 
learning very different  and  which defeats the purpose of modeling 
similarity between inputs.


• The regularizer would make sure  and  cannot get too far from each other 
unless  is very different from  


• The variational autoencoder (vae) is trained using gradient descent
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Variational autoencoder loss
• Unfortunately, gradient descent requires computing distribution  


• This is exponential because it is over all configurations of latent variable 


• Variational inference approximates this using a distribution 


•  is the variational parameter which indexes a family of distributions


• If  is a normal distribution then  would be the mean  and variance  for 
each data point 
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Tractable variational inference
• We want to measure how well does the variational distribution  

approximate the true distribution 


• We use the KL divergence again: 


• The optimal approximate distribution involves finding the optimal variational 
parameters 


• 


• Unfortunately, this is still intractable
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Tractable variational inference
• Define ELBO( ) the Evidence Lower BOund of 


• ELBO( ) = 


• Minimizing  wrt  is equivalent to maximizing ELBO( )


• For each data point 


• 


• Maximizing  is equivalent to minimizing 
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Applications: Image generation



Applications: caption generation



Applications: document clustering



Applications: sign clustering


