Self Attention

Advanced NLP: Summer 2023

Anoop Sarkar

Preliminaries

LayerNorm | H | H
2
https://arxiv.org/abs/1607.06450 H = — X; g : — (X‘ o /’t)
o z 3¢ l
also see: https://arxiv.org/abs/1911.07013 =1 i=1
_ X — U
X =W, XX
(X1 %, -, Xpy) N(X) = —— € avoids div by zero

O+ €

h=g-Nx)+Db

g and b are hyperparameters with dimension H

In PyTorch

>>> # NLP Example

>>> batch, sentence_length, embedding_dim = 20, 5, 10

>>> embedding = torxrch.randn(batch, sentence_length, embedding_dim)
>>> layer_noxrm = nn.LayexrNoxm(embedding_dim)

>>> # Activate module

>>> layer_norm(embedding)

aka how to train 2" neural

https://jmlr.org/papers/v15/srivastavail4a.htmi

https://arxiv.org/abs/1207.0580

Dropout

networks when it has 7 units

(O
AT

[
]

/ﬁ‘

AN

R
4«%

<7

Ne

\<

\
1\ 1‘\\\\
)/ X
AX)
o

YL

@ (XKL

\ X

e,
A

@7\

h
0\

(b) After applying dropout.

a) Standard Neural Net

Before dropout After dropout

[+1 [+1 [+1
Z(+1) _ (+) [+ b(-+) r§l) Ny Bernoulli(p),
yz(l-l-l) _ f(zi(H—l))’ ~(l) _ I'(l) iy y(l),

(l+1) W(l+1)§l 4 D)

(z 1) £(20HD),

In PyTorch

>>> m = nn.Drxopout(p=0.2) default: 0.5
>>> input = torch.randn(20, 16)
>>> output = m(input)

=

Before dropout

@ plit1)
() —L— ()

() e)
() —L— (5
(W) ——(i)

After dropout

PW

Present with Always
probability p present
(a) At training time (b) At test time

Figure 2: Left: A unit at training time that is present with probability p and is connected to units
in the next layer with weights w. Right: At test time, the unit is always present and

the weights are multiplied by p. The output at test time is same as the expected output
at training time.

1

I=p
test/evaluation time the dropout function simply computes the identity function

In Pytorch the outputs are scaled by a factor of during training so at inference/

25_ _

N
o
1

Withoﬁt dropoiut

Classification Error %
=
Ul
| _
/’ — -

..... WlthdrOpOut
N ' O\

R\ "'"Ar’\ WA ,‘1 : .
Y)“\/\\WW XN AIN AR AN
: ¢ v/ ““ \‘("”"'l \01‘\“ /Ad!‘,‘ ‘,,\.i‘yv “" ”A d ’
ol T W RN A A,

0 200000 400000 600000 800000 1000000
Number of weight updates

Figure 4: Test error for different architectures
with and without dropout. The net-
works have 2 to 4 hidden layers each
with 1024 to 2048 units.

- -

- - I S—
R . Rl
.;. - | ». =

-

ﬁ‘
-

e S -
"
- -~

-

- - -
\

.
. y
.
u!
\4

r

-
oo ¥
.
.

-
D@

. « ro-.
s . o
s » —

-
"l -

\‘l

HERNUNEORE SRS
Yie X .
HEEHIHEHHEHI‘E
a8 S A
— \. e L
IHHII T S 5 O S
* B .y
Ilﬂﬂﬁl!l.ﬂﬂlﬂl
- -.1

-\

' , . | -
"- ‘ ¥ l) ' v \: . .'

(a) Without dropout (b) Dropout with p = 0.5.

\
- -

"
!

Figure 7: Features learned on MNIST with one hidden layer autoencoders having 256 rectified
linear units.

Mean Activation Activation 14 Mean Activation Activation

10000

10

1200

| 1000 8000

800
6000

600

| 4000

400

2000

200

0 1 2 3 4 5 00 1 2 3 4 5 6 7 8 9

(a) Without dropout (b) Dropout with p = 0.5.

3 4 5 6 7 8

Figure 8: Effect of dropout on sparsity. ReLLUs were used for both models. Left: The histogram
of mean activations shows that most units have a mean activation of about 2.0. The
histogram of activations shows a huge mode away from zero. Clearly, a large fraction of
units have high activation. Right: The histogram of mean activations shows that most
units have a smaller mean mean activation of about 0.7. The histogram of activations
shows a sharp peak at zero. Very few units have high activation.

He+ 2015 https://arxiv.org/abs/1512.03385

Residual Connections
Add input of a layer to output of that layer

Zf+1 :f(zf) n Zf

* |Local gradient is 1 for the identity function

» Easier to learn the difference from the identity function than to learn the
function from scratch.

[no residuals] [residuals] https://arxiv.org/pdf/1712.09913.pdf

Transformer Encoder-Decoder

Attention Is All You Need

Ashish Vaswani*
Google Brain

Llion Jones™
Google Research
llion@google.com

Noam Shazeer” Niki Parmar” Jakob Uszkoreit™
Google Brain Google Research Google Research
avaswani@Ogoogle.com noam@google.com nikip@google.com usz@google.com

Aidan N. Gomez* 7 F.ukasz Kaiser*
University of Toronto Google Brain
aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* *
illia.polosukhin@gmail.com

https://arxiv.org/abs/1409.0473

NIPS (2017)

Probabilities

Softmax
N
Linear
Repeat for number of ax
decoder blocks. [_) Add & Norm

Attend only to output of
last Encoder Block.

Add & Norm

Repeat for number of —

encoder blocks 'j
r Jc——-ﬂ

[—) Add & Norm

(—) Add & Norm

\ | \ Block

ﬁ Add & Norm Add Position

Embeddings

Embeddings

\ | Decoder Inputs
Add Position
Embeddings
cs224n-self-attention- Embeddings
Encoder Inputs

transformers-2023_draft.pdf

Transformer Encoder-Decoder

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.htmi

The animal didn't cross the street because it was too tired.
L'animal n'a pas traversé la rue parce qu'il était trop fatiqué.

The animal didn't cross the street because it was too wide.
L'animal n'a pas traversé la rue parce qu'elle était trop large.

the translation for “it” depends on the gender of the noun it refers to - and
In French "animal” and “street” have different genders

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.htmi

g:-'m o
7)) - c w W
p s O @ & E B o w T 0 T
— = B = - © T O = = & =
g9 <v
7)) o o wn 7))
< c g & 2 E T o s g 2

The encoder self-attention distribution for the word “it” from the 5th to the 6th layer of
a Transformer trained on English to French translation (one of eight attention heads).

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.htmi

Self Attention

* Take a query vector (based on one token)

Do a "soft lookup" in a key-value store; pick up the key most like the query
and return the value vector

 "pick up" = return the average value based on a probability distribution
* "'most like" = higher probability for a key means it is more like the query
* "'more like" = dot product e.g.

* |n self attention we use the same tokens for queries, keys and values

cs224n-self-attention-
transformers-2023_draft.pdf

keys values keys values Weighted
Sum

vl vl
V2 V2

output
v w3 — [

K
e

Standard key-value lookup Self attention key-value lookup

cs224n-self-attention-
transformers-2023_draft.pdf

Self Attention

v

IIIIIIIIIIII eys

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.htmi

OUTPUT | | am a student

ENCODER DECODER

ENCODER DECODER

ENCODER DECODER

ENCODER DECODER
ENCODER DECODER

ENCODER DECODER

INPUT | Je suis etudiant https://jalammar.github.io/illustrated-transformer/

Self-attention

keys, queries and values from the same sequence

» Letw = (wy, ..., w,) be asequence of tokens, like "Havana is the capital of"

. For each w; let X, = Ew; where E € R™!V is an embedding matrix. V is the
vocabulary.

. - - dxd
Let Q, K, V be matrices in | Output for each word is a

. q; = OX. weighted sum of values:

° ki — KXi Ol — Z SOftmaX](qlTk]) y Vl

Self Attention: Three Problems

Encoder and decoder has no
inherent notion of ordering. It's
just a bag of words.

Add position representations
to each token

Just a weighted average of a
vector. No non-linearities.

Apply feedforward network to
each self attention output

Decoder should not look into
the future while training the
predictor.

Mask out the future by setting
attention weights to zero.

cs224n-self-attention-

Self_ attention transformers-2023_draft.pdf

Fixing the sequence order problem

 We need to encode the order of the tokens in a sentence in the keys, values
and gueries

* We want a position embedding (similar to a word embedding)

e Letp. €1 dfori € 1,..., n be the position embeddings

e If X; Is the embedding for the word w; then the combined word plus position
embedding is X; = X. + P;

 Either concatenate X; and p; or just add them. Adding Is more common.

cs224n-self-attention-

Position embeddings without learning transformers-2023_draft.pdf

Use a periodic function like sine and cosine with different periods to get an

embedding vector without any parameter updates.
-
%
v
o “

0.8 -
0.6 - \
(sin(i/100002°1/d)) o«
cos(i/10000%*1/4) 2
Di * 0
. .) Z*Q/d ©
sin(i/10000 2) oa.
(cos(i/10000%2/%))
5 20 25 30 35 40 45
COns: http://nlp.seas.harvard.edu/annotated-
* NOt |earnab|e transformer/#positional-encoding

* Extrapolation does not work
that well for some applications

dimension

— 4
— 5
— 6
— 7

o
N

embedding
o
o

=

Pros: e
* Periodicity means absolute
position is not important
* Can extrapolate to longer

sequences as periods restart

Self Attention Encoder using a Feed-forward Network

m; = MLP (output;)
= W, * ReLU(W; output; + b;) + b,

Intuition: the feed-forward (FF)
network processes the attention
vector and makes it usable by the

next layer

cs224n-self-attention-

transformers-2023_draft.pdf

T
FF FF
T T

self-attention

B ’

]
FF FF
1 !
self-attention
B B
W»- W3

. T
]

—

FF

H

Decoders should not see into We can only look at the

non-greyed out words in
the attention vector

the future

* During training we mask the attention
vector by setting attention scores to
— 00

* During inference, we decode from left [START]
to right and use the output from

previous time-step as input to the B
next The
Tk. i <i .
e = di]»] — Forencoding | chef
L] —00] S these words
)
who
cs224n-self-attention-

transformers-2023_draft.pdf

Self-attention building block

Probabilities
* Self attention e
. oTtmdadx
* need this! A~
Linear

* Position embeddings

* since self-attention is unordered 8 v

¥

* Nonlinearities <

* For the output of attention block NS §

* Simple feed-forward network that is easy to train o<

[T

* Masking
* To parallelize operations while not looking at the AddlPosition
future (during training) Embeddings
* Enforces training to behave like inference Embegdings
cs224n-self-attention- Inputs

transformers-2023_draft.pdf

From Single Attention Head to Multiple Attention Heads

S - 4
e, c W
o g 9 O 2T Q¢ T 39
— S & = — © T O = = =
S -y
) < c wn o
b c g @ £ EZ T O @ S 9

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.htmi

wide

wide

Each Layer has Multi-head Self-Attention
A i o

FF FF FF FF
| ! ! ! cit
self-attention y
’ ’ ’ council
FTF FF FF FF H H M € N == .
1 r r R

self-attention
. l l o000 .
w %Y

1451 2 W3

‘ refused
the

n | - _ \ v
I ll protest———
R— N . X

#H#ors

Image shows Layer 5 of

d
a 12 Layer Transformer B B permit——— /> Q
because S

they A____; (‘

12 attention heads for 2
feared i——

each layer

https://huggingface.co/

. SEP
spaces/exbert-project/exbert SEFR

[CLS]
The
city
council
##men
refused
the
protest

—H##ors

a
permit
because

h violence. T/iolence I -

[SEP]

:Elu i
7

Layer 1234567891112

Selected heads: 1,2,3,4,5,6,7,8,9,10,11,12

[CLS] [CLS]
Havana Havana III l
IS IS l
the the
capital capital I I l
of of
Cuba Cuba I F
[SEP] [SEP]

https://huggingface.co/spaces/exbert-project/exbert

Self-attention

Matrix form

« Letw = (wy,...,w,) be a sequence of tokens, like "Havana is the capital of"

. For each w, let x, = Ew; where E € RVl is an embedding matrix. V is the
vocabulary.

e Let X =[x..;X | € R4 he the concatenation of the input word vectors

. Let Q, K, V be matrices in R then X0 € R™4 XK € R™4 XV € R™¢

cs224n-self-attention-

Self- attention transformers-2023_draft.pdf

Matrix form

. First take the query-key dot products in matrix form: XQ(XK)'

. Next softmax and compute the weighted average: softmax(XQ(XK)")

. XV e R™
 Output is the context vector for each w; but in matrix form: | nxd
softmax | 7 %:,Q = A 7

cs224n-self-attention-
transformers-2023_draft.pdf

Multi-head Self-attention

Matrix form

» Let i range from 1...k for k total attention heads.

ISV

. 0,,K,,V, € R so the output 0, = softmax(XQ0,(XK,)") - XV, € |

» Combine all the heads: O =[Oy, ..., O]

reshape(x,.,Q)

h I'n ! o
softmax | 7 reshapellK)) | =

d/k

Add & Norm

Residual Connections and Layer Norm

 Combine residual connection and layer norm into a single "Add & Norm"
component

* [wo choices:
e Pre-norm: z°T! = ALN(Z?)) + Z°
e Post-norm: z° ! = LN(f(z%) + z°)

* Pre-norm leads to faster training. https://arxiv.org/abs/2002.04745

Scaled dot product attention

Attention with logit scaling

» Scaling to large dimension vectors d

« Dot product of random vectors (at initialization) grows proportional to \/ZZ

« Normalize the dot products by \ﬂi to stop this iterative scaling upwards

]
®.
3

SOftm aX n x]:nQ

Probabilities

Softmax
N
Linear
Repeat for number of ax
decoder blocks. [_) Add & Norm

Attend only to output of
last Encoder Block.

Add & Norm

Repeat for number of —

encoder blocks 'j
r Jc——-ﬂ

[—) Add & Norm

(—) Add & Norm

\ | \ Block

ﬁ Add & Norm Add Position

Embeddings

Embeddings

\ | Decoder Inputs
Add Position
Embeddings
cs224n-self-attention- Embeddings
Encoder Inputs

transformers-2023_draft.pdf

Transformer Encoder-Decoder

Machine Translation Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model BLEU Training Cost (FLOPs)
ot EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0 - 1020
GNMT + RL [38] 24.6 39.92 2.3-10° 1.4-10%
ConvS2S [9] 25.16 40.46 9.6-101% 1.5.10%
MOE [32] 26.03 40.56 2.0-10*° 1.2.10%°
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 - 10%°
GNMT + RL Ensemble [38] 2630 41.16 1.8-10%0 1.1-10%
ConvS2S Ensemble [9] 26.36 41.29 7.7-10° 1.2.10%1
Transformer (base model) 27.3 38.1 3.3-10'%

Transformer (big) 28.4 41.8 2.3.10%°

Same Transformer model applied to constituency parsing

Table 4: The Transformer generalizes well to English constituency parsing (Results are on Section 23

of WSJ)

Parser Training WSJ 23 F1

Vinyals & Kaiser el al. (2014) [37] | WSIJ only, discriminative 88.3

Petrov et al. (2006) [29] WSIJ only, discriminative 90.4

Zhu et al. (2013) [40] WSIJ only, discriminative 90.4

Dyer et al. (2016) [8] WSJ only, discriminative 91.7

Transformer (4 layers) WSJ only, discriminative 01.3

Zhu et al. (2013) [40] semi-supervised 91.3

Huang & Harper (2009) [14] semi-supervised 91.3

McClosky et al. (2006) [26] semi-supervised 92.1

Vinyals & Kaiser el al. (2014) [37] semi-supervised 92.1

Transformer (4 layers) semi-supervised 92.7

Luong et al. (2015) [23] multi-task 93.0

Dyer et al. (2016) [8] generative 93.3

Table 3: Variations on the Transformer architecture. Unlisted values are 1identical to those of the base
model. All metrics are on the English-to-German translation development set, newstest2013. Listed
perplexities are per-wordpiece, according to our byte-pair encoding, and should not be compared to

per-word perplexities.

train | PPL BLEU params
N dwoger dg h dr dy FParep €5 steps | (dev) (dev) x10°
base | 6 512 2048 8 64 64 0.1 0.1 100K | 492 25.8 65
1 512 3512 529 249
(A) 4 128 128 5000 255
16 32 32 491 25.8
32 16 16 5.01 25.4
(B) 16 5.16 25.1 58
32 5.01 25.4 60
2 6.11 23.7 36
4 5.19 253 50
8 488 255 80
©) 256 32 32 5.75 24.5 28
1024 128 128 466 26.0 168
1024 5.12 254 33
4096 4.75 26.2 90
0.0 577 24.6
0.2 4.95 25.5
D) 0.0 467 253
0.2 547 257
(E) positional embedding instead of sinusoids 492 25.7
big | 6 1024 4096 16 0.3 300K | 433 264 213

Problems with Transformers

What needs fixing?

« Quadratic compute cost

* |n prior models like RNNs attention grew linearly since it only paid attention to
the previous time step

* |In Transformers, attention takes O(nzd) time to compute for input of length n
and dimensionality d

 Positional representations
e Simple indices the best we can do?

* |n the decoder, attention at time t is independent of previous time steps.

