
Anoop Sarkar

Self Attention
Advanced NLP: Summer 2023

Preliminaries

x = (x1, x2, …, xH)

μ =
1
H

H

∑
i=1

xi σ2 =
1
H

H

∑
i=1

(xi − μ)2

N(x) =
x − μ
σ + ϵ

h = g ⋅ N(x) + b

LayerNorm
https://arxiv.org/abs/1607.06450

g and b are hyperparameters with dimension H

also see: https://arxiv.org/abs/1911.07013

ϵ avoids div by zero

In PyTorch

Dropout
https://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1207.0580

aka how to train neural
networks when it has units

2n

n

Before dropout After dropout

In PyTorch

default: 0.5

Before dropout After dropout

In Pytorch the outputs are scaled by a factor of during training so at inference/

test/evaluation time the dropout function simply computes the identity function

1
1 − p

Residual Connections
Add input of a layer to output of that layer

•

• Local gradient is 1 for the identity function

• Easier to learn the difference from the identity function than to learn the
function from scratch.

zℓ+1 = f(zℓ) + zℓ

He+ 2015 https://arxiv.org/abs/1512.03385

https://arxiv.org/pdf/1712.09913.pdf

Transformer Encoder-Decoder

https://arxiv.org/abs/1409.0473

NIPS (2017)

cs224n-self-attention-
transformers-2023_draft.pdf

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

the translation for “it” depends on the gender of the noun it refers to - and
in French “animal” and “street” have different genders

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

The encoder self-attention distribution for the word “it” from the 5th to the 6th layer of
a Transformer trained on English to French translation (one of eight attention heads).

Self Attention
• Take a query vector (based on one token)

• Do a "soft lookup" in a key-value store; pick up the key most like the query
and return the value vector

• "pick up" = return the average value based on a probability distribution

• "most like" = higher probability for a key means it is more like the query

• "more like" = dot product e.g.

• In self attention we use the same tokens for queries, keys and values

cs224n-self-attention-
transformers-2023_draft.pdf

Standard key-value lookup Self attention key-value lookup

cs224n-self-attention-
transformers-2023_draft.pdf

Self Attention

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

q query

k

vv vv vv vv vv vv

k kk kk kk kk kk

values

keys

https://jalammar.github.io/illustrated-transformer/

Self-attention
keys, queries and values from the same sequence

• Let be a sequence of tokens, like "Havana is the capital of"

• For each let where is an embedding matrix. V is the
vocabulary.

• Let Q, K, V be matrices in

•

•

•

w = (w1, …, wn)

wi xi = Ewi E ∈ ℝd×|V|

ℝd×d

qi = Qxi

ki = Kxi

vi = Vxi

Output for each word is a
weighted sum of values:

oi = ∑
j

softmaxj(qT
i kj) ⋅ vi

Problem Solution

Encoder and decoder has no
inherent notion of ordering. It's
just a bag of words.

Add position representations
to each token

Just a weighted average of a
vector. No non-linearities.

Apply feedforward network to
each self attention output

Decoder should not look into
the future while training the
predictor.

Mask out the future by setting
attention weights to zero.

Self Attention: Three Problems

Self-attention
Fixing the sequence order problem

• We need to encode the order of the tokens in a sentence in the keys, values
and queries

• We want a position embedding (similar to a word embedding)

• Let for be the position embeddings

• If is the embedding for the word then the combined word plus position
embedding is

• Either concatenate and or just add them. Adding is more common.

pi ∈ ℝd i ∈ 1,…, n

xi wi
x̃i = xi + pi

xi pi

cs224n-self-attention-
transformers-2023_draft.pdf

Position embeddings without learning
Use a periodic function like sine and cosine with different periods to get an
embedding vector without any parameter updates.

Pros:

* Periodicity means absolute

position is not important

* Can extrapolate to longer

sequences as periods restart

Cons:

* Not learnable

* Extrapolation does not work

that well for some applications

http://nlp.seas.harvard.edu/annotated-
transformer/#positional-encoding

cs224n-self-attention-
transformers-2023_draft.pdf

cs224n-self-attention-
transformers-2023_draft.pdf

Self Attention Encoder using a Feed-forward Network

Intuition: the feed-forward (FF)
network processes the attention
vector and makes it usable by the
next layer

cs224n-self-attention-
transformers-2023_draft.pdf

For encoding
these words

We can only look at the
non-greyed out words in
the attention vector

Decoders should not see into
the future

* During training we mask the attention
vector by setting attention scores to

* During inference, we decode from left

to right and use the output from
previous time-step as input to the
next

−∞

Self-attention building block
* Self attention

* need this! 

* Position embeddings
* since self-attention is unordered 

* Nonlinearities
* For the output of attention block

* Simple feed-forward network that is easy to train 

* Masking
* To parallelize operations while not looking at the

future (during training)

* Enforces training to behave like inference

cs224n-self-attention-
transformers-2023_draft.pdf

From Single Attention Head to Multiple Attention Heads

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Each Layer has Multi-head Self-Attention

Image shows Layer 5 of
a 12 Layer Transformer

12 attention heads for
each layer

https://huggingface.co/
spaces/exbert-project/exbert

https://huggingface.co/spaces/exbert-project/exbert

Self-attention
Matrix form

• Let be a sequence of tokens, like "Havana is the capital of"

• For each let where is an embedding matrix. V is the
vocabulary.

• Let be the concatenation of the input word vectors

• Let Q, K, V be matrices in then

w = (w1, …, wn)

wi xi = Ewi E ∈ ℝd×|V|

X = [xi; …; xn] ∈ ℝn×d

ℝd×d XQ ∈ ℝn×d, XK ∈ ℝn×d, XV ∈ ℝn×d

Self-attention
Matrix form
• First take the query-key dot products in matrix form:

• Next softmax and compute the weighted average: softmax()

• Output is the context vector for each but in matrix form:

XQ(XK)T

XQ(XK)T

⋅ XV ∈ ℝn×d

wi ℝn×d

cs224n-self-attention-
transformers-2023_draft.pdf

Multi-head Self-attention
Matrix form
• Let range from for k total attention heads.

• so the output

• Combine all the heads:

h 1…k

Qh, Kh, Vh ∈ ℝd× d
k Oh = softmax(XQh(XKh)T) ⋅ XVh ∈ ℝd

k

O = [O1, …, Ok]

cs224n-self-attention-
transformers-2023_draft.pdf

Add & Norm
Residual Connections and Layer Norm

• Combine residual connection and layer norm into a single "Add & Norm"
component

• Two choices:

• Pre-norm:

• Post-norm:

• Pre-norm leads to faster training.

zℓ+1 = f(LN(zℓ)) + zℓ

zℓ+1 = LN(f(zℓ) + zℓ)

https://arxiv.org/abs/2002.04745

Scaled dot product attention
Attention with logit scaling

• Scaling to large dimension vectors

• Dot product of random vectors (at initialization) grows proportional to

• Normalize the dot products by to stop this iterative scaling upwards

d

d

d

d

cs224n-self-attention-
transformers-2023_draft.pdf

Machine Translation Results

Same Transformer model applied to constituency parsing

Problems with Transformers
What needs fixing?

• Quadratic compute cost

• In prior models like RNNs attention grew linearly since it only paid attention to
the previous time step

• In Transformers, attention takes time to compute for input of length
and dimensionality

• Positional representations

• Simple indices the best we can do?

• In the decoder, attention at time t is independent of previous time steps.

O(n2d) n
d

