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Preliminaries
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g and b are hyperparameters with dimension H

In PyTorch

>>> # NLP Example

>>> batch, sentence_length, embedding_dim = 20, 5, 10

>>> embedding = torxrch.randn(batch, sentence_length, embedding_dim)
>>> layer_noxrm = nn.LayexrNoxm(embedding_dim)

>>> # Activate module

>>> layer_norm(embedding)



aka how to train 2" neural

https://jmlr.org/papers/v15/srivastavail4a.htmi

https://arxiv.org/abs/1207.0580

Dropout

networks when it has 7 units
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(b) After applying dropout.

a) Standard Neural Net



Before dropout After dropout
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In PyTorch

>>> m = nn.Drxopout(p=0.2) default: 0.5
>>> input = torch.randn(20, 16)
>>> output = m(input)
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Present with Always
probability p present
(a) At training time (b) At test time

Figure 2: Left: A unit at training time that is present with probability p and is connected to units
in the next layer with weights w. Right: At test time, the unit is always present and

the weights are multiplied by p. The output at test time is same as the expected output
at training time.

1

I=p
test/evaluation time the dropout function simply computes the identity function

In Pytorch the outputs are scaled by a factor of during training so at inference/
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Figure 4: Test error for different architectures
with and without dropout. The net-
works have 2 to 4 hidden layers each
with 1024 to 2048 units.
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(a) Without dropout (b) Dropout with p = 0.5.
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Figure 7: Features learned on MNIST with one hidden layer autoencoders having 256 rectified
linear units.
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Figure 8: Effect of dropout on sparsity. ReLLUs were used for both models. Left: The histogram
of mean activations shows that most units have a mean activation of about 2.0. The
histogram of activations shows a huge mode away from zero. Clearly, a large fraction of
units have high activation. Right: The histogram of mean activations shows that most
units have a smaller mean mean activation of about 0.7. The histogram of activations
shows a sharp peak at zero. Very few units have high activation.



He+ 2015 https://arxiv.org/abs/1512.03385

Residual Connections
Add input of a layer to output of that layer

Zf+1 :f(zf) n Zf

* |Local gradient is 1 for the identity function

» Easier to learn the difference from the identity function than to learn the
function from scratch.

[no residuals] [residuals] https://arxiv.org/pdf/1712.09913.pdf



Transformer Encoder-Decoder



Attention Is All You Need
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Probabilities

Softmax
N
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Repeat for number of ax
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Transformer Encoder-Decoder



https://ai.googleblog.com/2017/08/transformer-novel-neural-network.htmi



The animal didn't cross the street because it was too tired.
L'animal n'a pas traversé la rue parce qu'il était trop fatiqué.

The animal didn't cross the street because it was too wide.
L'animal n'a pas traversé la rue parce qu'elle était trop large.

the translation for “it” depends on the gender of the noun it refers to - and
In French "animal” and “street” have different genders

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.htmi
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The encoder self-attention distribution for the word “it” from the 5th to the 6th layer of
a Transformer trained on English to French translation (one of eight attention heads).

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.htmi



Self Attention

* Take a query vector (based on one token)

Do a "soft lookup" in a key-value store; pick up the key most like the query
and return the value vector

 "pick up" = return the average value based on a probability distribution
* "'most like" = higher probability for a key means it is more like the query
* "'more like" = dot product e.g.

* |n self attention we use the same tokens for queries, keys and values

cs224n-self-attention-
transformers-2023_draft.pdf



keys values keys values Weighted
Sum

vl vl
V2 V2

output
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Standard key-value lookup Self attention key-value lookup

cs224n-self-attention-
transformers-2023_draft.pdf



Self Attention
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https://ai.googleblog.com/2017/08/transformer-novel-neural-network.htmi



OUTPUT | | am a student

ENCODER DECODER

ENCODER DECODER

ENCODER DECODER

ENCODER DECODER
ENCODER DECODER

ENCODER DECODER

INPUT | Je  suis etudiant https://jalammar.github.io/illustrated-transformer/



Self-attention

keys, queries and values from the same sequence

» Letw = (wy, ..., w, ) be asequence of tokens, like "Havana is the capital of"

. For each w; let X, = Ew; where E € R™!V is an embedding matrix. V is the
vocabulary.

. - - dxd
Let Q, K, V be matrices in | Output for each word is a

. q; = OX. weighted sum of values:

° ki — KXi Ol — Z SOftmaX](qlTk]) y Vl



Self Attention: Three Problems

Encoder and decoder has no
inherent notion of ordering. It's
just a bag of words.

Add position representations
to each token

Just a weighted average of a
vector. No non-linearities.

Apply feedforward network to
each self attention output

Decoder should not look into
the future while training the
predictor.

Mask out the future by setting
attention weights to zero.




cs224n-self-attention-

Self_ attention transformers-2023_draft.pdf

Fixing the sequence order problem

 We need to encode the order of the tokens in a sentence in the keys, values
and gueries

* We want a position embedding (similar to a word embedding)

e Letp. €1 dfori € 1,..., n be the position embeddings

e If X; Is the embedding for the word w; then the combined word plus position
embedding is X; = X. + P;

 Either concatenate X; and p; or just add them. Adding Is more common.



cs224n-self-attention-

Position embeddings without learning transformers-2023_draft.pdf

Use a periodic function like sine and cosine with different periods to get an

embedding vector without any parameter updates.
-
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* Extrapolation does not work
that well for some applications
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Pros: e
* Periodicity means absolute
position is not important
* Can extrapolate to longer

sequences as periods restart



Self Attention Encoder using a Feed-forward Network

m; = MLP (output;)
= W, * ReLU(W; output; + b;) + b,

Intuition: the feed-forward (FF)
network processes the attention
vector and makes it usable by the

next layer

cs224n-self-attention-

transformers-2023_draft.pdf
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Decoders should not see into We can only look at the

non-greyed out words in
the attention vector

the future

* During training we mask the attention
vector by setting attention scores to
— 00

* During inference, we decode from left [START]
to right and use the output from

previous time-step as input to the B
next The
Tk. i <i .
e = di ]»] — Forencoding |  chef
L] —00 ] S these words
)
who
cs224n-self-attention-

transformers-2023_draft.pdf



Self-attention building block

Probabilities
* Self attention e
. oTtmdadx
* need this! A~
Linear

* Position embeddings

* since self-attention is unordered 8 v

¥

* Nonlinearities <

* For the output of attention block NS §

* Simple feed-forward network that is easy to train o<

[T

* Masking
* To parallelize operations while not looking at the AddlPosition
future (during training) Embeddings
* Enforces training to behave like inference Embegdings
cs224n-self-attention- Inputs

transformers-2023_draft.pdf



From Single Attention Head to Multiple Attention Heads

S - 4
e, c W
o g 9 O 2T Q¢ T 39
— S & = — © T O = = =
S -y
) < c wn o
b c g @ £ EZ T O @ S 9

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.htmi
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Each Layer has Multi-head Self-Attention
A i o
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[SEP]
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Selected heads: 1,2,3,4,5,6,7,8,9,10,11,12
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https://huggingface.co/spaces/exbert-project/exbert



Self-attention

Matrix form

« Letw = (wy,...,w,) be a sequence of tokens, like "Havana is the capital of"

. For each w, let x, = Ew; where E € RVl is an embedding matrix. V is the
vocabulary.

e Let X =[x..;X | € R4 he the concatenation of the input word vectors

. Let Q, K, V be matrices in R then X0 € R™4 XK € R™4 XV € R™¢




cs224n-self-attention-

Self- attention transformers-2023_draft.pdf

Matrix form

. First take the query-key dot products in matrix form: XQ(XK)'

. Next softmax and compute the weighted average: softmax(XQ(XK)")

. XV e R™
 Output is the context vector for each w; but in matrix form: | nxd
softmax | 7  %:,Q = A 7



cs224n-self-attention-
transformers-2023_draft.pdf

Multi-head Self-attention

Matrix form

» Let i range from 1...k for k total attention heads.

ISV

. 0,,K,,V, € R so the output 0, = softmax(XQ0,(XK,)") - XV, € |

» Combine all the heads: O =[Oy, ..., O]

reshape(x,.,Q)

h I'n ! o
softmax | 7 reshapellK)) | =

d/k



Add & Norm

Residual Connections and Layer Norm

 Combine residual connection and layer norm into a single "Add & Norm"
component

* [wo choices:
e Pre-norm: z°T! = ALN(Z?)) + Z°
e Post-norm: z° ! = LN(f(z%) + z°)

* Pre-norm leads to faster training. https://arxiv.org/abs/2002.04745



Scaled dot product attention

Attention with logit scaling

» Scaling to large dimension vectors d

« Dot product of random vectors (at initialization) grows proportional to \/ZZ

« Normalize the dot products by \ﬂi to stop this iterative scaling upwards

]
®.
3

SOftm aX n x]:nQ
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Machine Translation Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model BLEU Training Cost (FLOPs)
ot EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0 - 1020
GNMT + RL [38] 24.6 39.92 2.3-10° 1.4-10%
ConvS2S [9] 25.16 40.46 9.6-101% 1.5.10%
MOE [32] 26.03  40.56 2.0-10*° 1.2.10%°
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 - 10%°
GNMT + RL Ensemble [38] 2630 41.16 1.8-10%0 1.1-10%
ConvS2S Ensemble [9] 26.36 41.29 7.7-10°  1.2.10%1
Transformer (base model) 27.3 38.1 3.3-10'%

Transformer (big) 28.4 41.8 2.3.10%°



Same Transformer model applied to constituency parsing

Table 4: The Transformer generalizes well to English constituency parsing (Results are on Section 23

of WSJ)

Parser Training WSJ 23 F1

Vinyals & Kaiser el al. (2014) [37] | WSIJ only, discriminative 88.3

Petrov et al. (2006) [29] WSIJ only, discriminative 90.4

Zhu et al. (2013) [40] WSIJ only, discriminative 90.4

Dyer et al. (2016) [8] WSJ only, discriminative 91.7

Transformer (4 layers) WSJ only, discriminative 01.3

Zhu et al. (2013) [40] semi-supervised 91.3

Huang & Harper (2009) [14] semi-supervised 91.3

McClosky et al. (2006) [26] semi-supervised 92.1

Vinyals & Kaiser el al. (2014) [37] semi-supervised 92.1

Transformer (4 layers) semi-supervised 92.7

Luong et al. (2015) [23] multi-task 93.0

Dyer et al. (2016) [8] generative 93.3




Table 3: Variations on the Transformer architecture. Unlisted values are 1identical to those of the base
model. All metrics are on the English-to-German translation development set, newstest2013. Listed
perplexities are per-wordpiece, according to our byte-pair encoding, and should not be compared to

per-word perplexities.

train | PPL BLEU params
N dwoger  dg  h dr dy FParep €5 steps | (dev) (dev)  x10°
base | 6 512 2048 8 64 64 0.1 0.1 100K | 492  25.8 65
1 512 3512 529 249
(A) 4 128 128 5000 255
16 32 32 491 25.8
32 16 16 5.01 25.4
(B) 16 5.16  25.1 58
32 5.01 25.4 60
2 6.11 23.7 36
4 5.19 253 50
8 488 255 80
©) 256 32 32 5.75 24.5 28
1024 128 128 466  26.0 168
1024 5.12 254 33
4096 4.75 26.2 90
0.0 577  24.6
0.2 4.95 25.5
D) 0.0 467 253
0.2 547 257
(E) positional embedding instead of sinusoids 492  25.7
big | 6 1024 4096 16 0.3 300K | 433 264 213




Problems with Transformers

What needs fixing?

« Quadratic compute cost

* |n prior models like RNNs attention grew linearly since it only paid attention to
the previous time step

* |In Transformers, attention takes O(nzd) time to compute for input of length n
and dimensionality d

 Positional representations
e Simple indices the best we can do?

* |n the decoder, attention at time t is independent of previous time steps.



