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Preliminaries
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h = g ⋅ N(x) + b

LayerNorm
https://arxiv.org/abs/1607.06450

g and b are hyperparameters with dimension H

also see: https://arxiv.org/abs/1911.07013

ϵ avoids div by zero

In PyTorch



Dropout
https://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1207.0580

aka how to train  neural 
networks when it has  units
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Before dropout After dropout

In PyTorch

default: 0.5



Before dropout After dropout



In Pytorch the outputs are scaled by a factor of  during training so at inference/

test/evaluation time the dropout function simply computes the identity function 
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Residual Connections
Add input of a layer to output of that layer

• 


• Local gradient is 1 for the identity function


• Easier to learn the difference from the identity function than to learn the 
function from scratch.

zℓ+1 = f(zℓ) + zℓ

He+ 2015 https://arxiv.org/abs/1512.03385

https://arxiv.org/pdf/1712.09913.pdf



Transformer Encoder-Decoder



https://arxiv.org/abs/1409.0473

NIPS (2017)



cs224n-self-attention-
transformers-2023_draft.pdf



https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html



https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

the translation for “it” depends on the gender of the noun it refers to - and 
in French “animal” and “street” have different genders



https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

The encoder self-attention distribution for the word “it” from the 5th to the 6th layer of 
a Transformer trained on English to French translation (one of eight attention heads).



Self Attention
• Take a query vector (based on one token)


• Do a "soft lookup" in a key-value store; pick up the key most like the query 
and return the value vector


• "pick up" = return the average value based on a probability distribution


• "most like" =  higher probability for a key means it is more like the query


• "more like" = dot product e.g.


• In self attention we use the same tokens for queries, keys and values

cs224n-self-attention-
transformers-2023_draft.pdf



Standard key-value lookup Self attention key-value lookup

cs224n-self-attention-
transformers-2023_draft.pdf



Self Attention

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
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https://jalammar.github.io/illustrated-transformer/



Self-attention
keys, queries and values from the same sequence

• Let  be a sequence of tokens, like "Havana is the capital of"


• For each  let  where  is an embedding matrix. V is the 
vocabulary.


• Let Q, K, V be matrices in  


• 


• 


•

w = (w1, …, wn)

wi xi = Ewi E ∈ ℝd×|V|

ℝd×d

qi = Qxi

ki = Kxi

vi = Vxi

Output for each word is a 
weighted sum of values:


oi = ∑
j

softmaxj(qT
i kj) ⋅ vi



Problem Solution

Encoder and decoder has no 
inherent notion of ordering. It's 
just a bag of words.

Add position representations 
to each token

Just a weighted average of a 
vector. No non-linearities.

Apply feedforward network to 
each self attention output

Decoder should not look into 
the future while training the 
predictor.

Mask out the future by setting 
attention weights to zero.

Self Attention: Three Problems



Self-attention
Fixing the sequence order problem

• We need to encode the order of the tokens in a sentence in the keys, values 
and queries


• We want a position embedding (similar to a word embedding)


• Let  for  be the position embeddings


• If  is the embedding for the word  then the combined word plus position 
embedding is 


• Either concatenate  and  or just add them. Adding is more common.

pi ∈ ℝd i ∈ 1,…, n

xi wi
x̃i = xi + pi

xi pi

cs224n-self-attention-
transformers-2023_draft.pdf



Position embeddings without learning 
Use a periodic function like sine and cosine with different periods to get an 
embedding vector without any parameter updates.

Pros:

* Periodicity means absolute 

position is not important

* Can extrapolate to longer 

sequences as periods restart

Cons:

* Not learnable

* Extrapolation does not work 

that well for some applications

http://nlp.seas.harvard.edu/annotated-
transformer/#positional-encoding

cs224n-self-attention-
transformers-2023_draft.pdf



cs224n-self-attention-
transformers-2023_draft.pdf

Self Attention Encoder using a Feed-forward Network

Intuition: the feed-forward (FF) 
network processes the attention 
vector and makes it usable by the 
next layer



cs224n-self-attention-
transformers-2023_draft.pdf

For encoding 
these words

We can only look at the 
non-greyed out words in 
the attention vector

Decoders should not see into 
the future

* During training we mask the attention 
vector by setting attention scores to 



* During inference, we decode from left 

to right and use the output from 
previous time-step as input to the 
next

−∞



Self-attention building block
* Self attention 

* need this! 

* Position embeddings 
* since self-attention is unordered 

* Nonlinearities 
* For the output of attention block

* Simple feed-forward network that is easy to train 

* Masking 
* To parallelize operations while not looking at the 

future (during training)

* Enforces training to behave like inference

cs224n-self-attention-
transformers-2023_draft.pdf



From Single Attention Head to Multiple Attention Heads

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html



Each Layer has Multi-head Self-Attention

Image shows Layer 5 of 
a 12 Layer Transformer


12 attention heads for 
each layer

https://huggingface.co/
spaces/exbert-project/exbert



https://huggingface.co/spaces/exbert-project/exbert



Self-attention
Matrix form

• Let  be a sequence of tokens, like "Havana is the capital of"


• For each  let  where  is an embedding matrix. V is the 
vocabulary.


• Let  be the concatenation of the input word vectors


• Let Q, K, V be matrices in  then 

w = (w1, …, wn)

wi xi = Ewi E ∈ ℝd×|V|

X = [xi; …; xn] ∈ ℝn×d

ℝd×d XQ ∈ ℝn×d, XK ∈ ℝn×d, XV ∈ ℝn×d



Self-attention
Matrix form
• First take the query-key dot products in matrix form: 


• Next softmax and compute the weighted average: softmax( )



• Output is the context vector for each  but in matrix form: 

XQ(XK)T

XQ(XK)T

⋅ XV ∈ ℝn×d

wi ℝn×d

cs224n-self-attention-
transformers-2023_draft.pdf



Multi-head Self-attention
Matrix form
• Let  range from  for k total attention heads.


•  so the output 


• Combine all the heads: 

h 1…k

Qh, Kh, Vh ∈ ℝd× d
k Oh = softmax(XQh(XKh)T) ⋅ XVh ∈ ℝd

k

O = [O1, …, Ok]

cs224n-self-attention-
transformers-2023_draft.pdf



Add & Norm
Residual Connections and Layer Norm

• Combine residual connection and layer norm into a single "Add & Norm" 
component


• Two choices:


• Pre-norm: 


• Post-norm: 


• Pre-norm leads to faster training.

zℓ+1 = f(LN(zℓ)) + zℓ

zℓ+1 = LN( f(zℓ) + zℓ)

https://arxiv.org/abs/2002.04745



Scaled dot product attention
Attention with logit scaling

• Scaling to large dimension vectors 


• Dot product of random vectors (at initialization) grows proportional to 


• Normalize the dot products by  to stop this iterative scaling upwards

d

d

d

d



cs224n-self-attention-
transformers-2023_draft.pdf



Machine Translation Results



Same Transformer model applied to constituency parsing





Problems with Transformers
What needs fixing?

• Quadratic compute cost


• In prior models like RNNs attention grew linearly since it only paid attention to 
the previous time step


• In Transformers, attention takes  time to compute for input of length  
and dimensionality 


• Positional representations


• Simple indices the best we can do?


• In the decoder, attention at time t is independent of previous time steps.

O(n2d) n
d


