Parameter Efficient Fine-Tuning Advanced NLP: Summer 2023

Anoop Sarkar

Prefix Tuning

https://aclanthology.org/2021.acl-long.353

Li and Liang, ACL 2021

Why not just use fine-tuning

1.5B parameters

Tasks

...

Table-to-Text Summarization Translation Dialog Generation

Each task requires a full model copy

TABLE: name: Alimentum | area: city centre | family friendly: no A: There is a place in the city centre, Alimentum, that is not family-friendly.

TABLE: name: Starbucks | area: riverside | customer rating: 5 star

A: There is a place in the riverside, Starbucks, that has a 5-star customer rating.

Cannot use large training set • Manual prompts can be suboptimal Cannot be used with smaller LMs like GPT-2

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

1	Translate English to French:	← task description
2	cheese =>	← prompt

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

https://arxiv.org/pdf/2005.14165.pdf

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
task description
Translate English to French:
sea otter => loutre de mer
                                       examples
peppermint => menthe poivrée
plush girafe => girafe peluche
cheese =>
                                       prompt
```


Prompt tuning: enabling smaller LMs iPet: better prompts for each task improves accuracy for small LMs

Figure 2: Application of a PVP $\mathbf{p} = (P, v)$ for recognizing textual entailment: An input $x = (x_1, x_2)$ is converted into a cloze question P(x); $q_{\mathbf{p}}(y \mid x)$ for each y is derived from the probability of v(y) being a plausible choice for the masked position.

	GPT-3	175,000	71.8	prompt
2	Pet	223	74.0	prompt F
Ŭ	iРет	223	75.4	prompt F
	SotA	11,000	<i>89.3</i>	full FT

https://arxiv.org/pdf/2009.07118.pdf

Prefix Tuning Intuition

- Optimize finding actual words
- Involves discrete optimization which is challenging and not expressive

Learn a good instruction that can steer the LM to produce the right output

Prefix Tuning Intuition

- Optimize the instruction as continuous word embeddings
- More expressive
- Limits the scope of the prompt to a input embeddings

Prefix Tuning Intuition

- Very expressive

Optimize the instruction as prefix activation for all layers in the instruction

• All the layers of the prefix can be tuned to create the most expressive prompt

Prefix Tuning Autoregressive Modelling

Prefix Tuning

$$\max_{\theta} \log p_{\phi,\theta}(y \mid x) = \sum_{i \in \mathsf{Y}_{\mathsf{idx}}} \log p_{\phi,\theta}(z_i \mid h_{< i}) \qquad \begin{array}{l} \text{freeze LM parameters } \phi \\ \text{update prefix parameters } \theta \end{array}$$

$$h_{i} = \begin{cases} P_{\theta}[i,:], & \text{if } i \in \mathsf{P}_{\mathsf{idx}}, \\ \mathrm{LM}_{\phi}(z_{i}, h_{< i}), & \text{otherwise.} \end{cases}$$

ire	Auto	oregr	essive	Mo	odel (e.g. G	РТ2) У (ta	arget utterar	nce)		
E	ducati	on ,	Hogwa	arts	[SEP]	Harry	Potter	graduated	from	Hogwarts	
5	h_6	h_7	h_8		h_9	h_{10}	h_{11}	h_{12}	h_{13}	h_{14}	
	6	7	8		9	10	11	12	13	14	1
3	, 4, 5,	, 6, 7	7,8]		an ang	Yidx	= [9,	10, 11, 12	2, 13,	14]	

 $|P_{idx}| \times \dim(h_i)$

 $|P_{idx}| \times k$

Once training is complete we store only P_{θ} (throw away the MLP)

k is 512 for table-to-text and 800 for summarization

Effect of Prefix Tuning

https://docs.adapterhub.ml/methods.html#prefix-tuning

Self-Attention over the added virtual prefix tokens

Prefix Tuning Vs. Finetuning

Source	name : The Eagle type : rating : average area : riv
Prefix (50)	The Eagle is a cheap Chir
Prefix (100)	The Eagle is a cheap coff
	has average customer ration
Prefix (200)	The Eagle is a cheap Ch
	Burger King. It has avera
Prefix (500)	The Eagle is a coffee shop
	area near Burger King.
	friendly.
FT (50)	The Eagle coffee shop is I
FT (100)	The Eagle is a cheap coffe
	a low customer rating and
FT (200)	The Eagle is a cheap Ch
	located near Burger King
FT (500)	The Eagle is a cheap Chin
	located in the riverside ar

* The number in the parenthesis refers to the training size.

coffee shop | food : Chinese | price : cheap | customer verside | family friendly : no | near : Burger King

nese coffee shop located near Burger King. See shop located in the riverside near Burger King. It ngs.

inese coffee shop located in the riverside area near ge customer ratings.

that serves Chinese food. It is located in the riverside It has an average customer rating and is not family

located in the riverside area near Burger King. ee shop near Burger King in the riverside area. It has it is not family friendly.

inese coffee shop with a low customer rating. It is in the riverside area.

nese coffee shop with average customer ratings. It is ea near Burger King.

Prefix Tuning Extrapolation to unseen categories

Trained on 9 categories

Astronaut, University, Monument, Building, ComicsCharacter, Food, Airport, SportsTeam, City, and WrittenWork

Test on 5 unseen categories

Athlete, Artist, MeanOfTransportation, CelestialBody, Politician [103_Colmore_Row | architect | John_Madin]
 x: [John_Madin | birthPlace | Birmingham]
 [Birmingham | leaderName | Andrew_Mitchell]

y: Andrew Mitchell as a key leader) and became an architect, designing 103 Colmore Row.

[Albennie_Jones | genre | Rhythm_and_blues]
 x: [Albennie_Jones | birthPlace | Errata,_Mississippi]
 [Rhythm_and_blues | derivative | Disco]

Albennie Jones, born in Errata, Mississippi, is a performer of rhythm and blues, of which disco is a derivative.

y:

Prefix Tuning Extrapolation to unseen categories

Parameter-Efficient Tuning with Special Token Adaptation

Xiaocong Yang[†], James Y. Huang[‡], Wenxuan Zhou[‡] and Muhao Chen[‡] [†]Tsinghua University; [‡]University of Southern California yangxc.18@sem.tsinghua.edu.cn; {huangjam, zhouwenx, muhaoche}@usc.edu

https://aclanthology.org/2023.eacl-main.60.pdf

aka PaSTA

L20-H3 L20-H5

https://aclanthology.org/2023.eacl-main.60.pdf

L20-H15 L20-H8

Figure 1: Examples of vertical attention heads in the 5th and 20-th layer of BERT-large with a random sample from CoLA (Warstadt et al., 2019) as input. Heads in the first row and second row assign most of maximal attention weights to [CLS] and [SEP] respectively.

https://aclanthology.org/2023.eacl-main.60.pdf

Figure 2: Architecture of PASTA layer in Transformer. Skip-connections in Transformers are not shown for brevity. At layer l we add a trainable vector $\mathbf{e}(\mathbf{v}_p^l) \in \mathbb{R}^d$ to the hidden representation of the p-th special token in the input sequence, and freeze the weights of the PLM.

Results on GLUE with BERT-large

	%Param	RTE acc.	CoLA mcc.	STS-B Spearman	MRPC F1	SST-2 acc.	QNLI acc.	MNLI(m/mm) acc.	QQP F1
Full Finetuning*	100%	70.1	60.5	86.5	89.3	94.9	92.7	86.7/85.9	72.1
Adapter**	3.6%	71.5	59.5	86.9	89.5	94.0	90.7	84.9/85.1	71.8
Diff-Prune [†]	0.5%	70.6	61.1	86.0	89.7	94.1	93.3	86.4/86.0	71.1
P-tuning v2	0.29%	70.1	60.1	86.8	88.0	94.6	92.3	85.3/84.9	70.6
BitFit [‡]	0.08%	72.0	59.7	85.5	88.9	94.2	92.0	84.5/84.8	70.5
PASTA	0.015%-0.022%	70.8	62.3	86.6	87.9	94.4	92.8	83.4/83.4	68.6

https://aclanthology.org/2023.eacl-main.60.pdf

Ablation study on GLUE and CoNLL-2003

CoLA RTE MRPC STS-B CoNLL2003

PASTA	65.4	76.2	89.7	90.8	94.0
- w/o [CLS]	58.8	72.6	91.4	90.2	93.7
-w/o [SEP]	64.5	71.1	91.9	90.3	93.7
- shared vector	64.7	74.7	92.1	90.0	93.9
- classifier only	36.5	54.2	81.5	64.9	77.4

on GLUE and CoNLL2003 development sets.

https://aclanthology.org/2023.eacl-main.60.pdf

Table 4: Performance of ablation study with BERT-large

Adapters

Bottleneck Adapters

• Given a hidden layer h^{ℓ} for layer ℓ in a Transformer layer (before Add & Norm)

•
$$h^{\ell} \leftarrow h^{\ell} + f(h^{\ell} \cdot W_{\text{down}}) \cdot W_{\text{up}}$$

- W_{down} lowers the dimensionality from $\dim(h^{\ell})$ down to k where $k << \dim(h^{\ell})$
- W_{up} raises the dimensionality from k back up to dim (h^{ℓ})
- f is a non-linear function (GeLU)
- $h^{\ell+1} = \operatorname{Add}+\operatorname{LN}(h^{\ell})$

Also see: https://www.cs.huji.ac.il/labs/learning/Papers/allerton.pdf

Bottleneck Adapters

https://docs.adapterhub.ml/

Mixture of Adapters

Mixture of Adapters Regularization loss

to k and for projecting up to dim (h^{ℓ})

•
$$A_{\ell} = \{ W_{\text{down}}^{\ell,j}, W_{\text{down}}^{\ell,k} \}$$
 and $B_{\ell} =$

- where $j, k \in [0, M 1]$
- $h^{\ell} \leftarrow h^{\ell} + f(h^{\ell} \cdot W^{\ell,i}_{\text{down}}) \cdot W^{\ell,j}_{\text{up}}$
- Pick *i*, *j* at random
- Pick *i*, *j* twice for each input batch.

• For each layer ℓ use M different feed-forward networks for projecting down

 $= \{ W_{up}^{\ell,j}, W_{up}^{\ell,k} \}$

Mixture of Adapters Regularization loss

Fine tuning loss: $\mathscr{L} = -\sum_{i=1}^{C} \delta(x, \hat{x}) \log \operatorname{softmax}((z^{\mathscr{A}}(x)))$ c=1

- where δ is 1 if the two arguments are equal
- \hat{x} is the right answer for input x
- $z^{\mathscr{A}}(x)$ are the logits for the fine-tuning output softmax activation (using adapter \mathscr{A}

Mixture of Adapters Regularization loss

- Let $\mathscr{A} = \{A_{\ell=1}^L\}$ and $\mathscr{B} = \{B_{\ell=1}^L\}$ be the adapter modules.
- Pick *i*, *j* twice for each input batch.
- Let $D(\mathcal{X}, \mathcal{Y}) = \mathsf{KL}(z^{\mathcal{X}}(x) || z^{\mathcal{Y}}(x))$ where *x* is the input to the LLM with frozen parameters; only \mathcal{X}, \mathcal{Y} are trained against fine-tuning prediction loss.
- Add following consistency loss to fine-tuning a LLM

•
$$\mathscr{L} \leftarrow \mathscr{L} + \frac{1}{2}(D(\mathscr{A}, \mathscr{B}) + D(\mathscr{A}))$$

 $(\mathcal{B}, \mathscr{A}))$

Mixture of Adapters

Training Stage

$$W_{\text{down}}^{\ell} = \frac{1}{M} \sum_{j=1}^{M} W_{\text{down}^{\ell,j}}$$

https://arxiv.org/abs/2205.12410

Inference Stage

Results on GLUE with ROBERTa-large

Model	#Param.	MNLI Acc	QNLI Acc	SST2 Acc	QQP Acc	MRPC Acc	CoLA Mcc	RTE Acc	STS-B Pearson	
Full Fine-tuning [†]	355.0M	90.2	94.7	96.4	92.2	90.9	68.0	86.6	92.4	
Pfeiffer Adapter [†]	3.0M	90.2	94.8	96.1	91.9	90.2	68.3	83.8	92.1	
Pfeiffer Adapter [†]	0.8M	90.5	94.8	96.6	91.7	89.7	67.8	80.1	91.9	
Houlsby Adapter [†]	6.0M	89.9	94.7	96.2	92.1	88.7	66.5	83.4	91.0	
Houlsby Adapter [†]	0.8M	90.3	94.7	96.3	91.5	87.7	66.3	72.9	91.5	
LoRA [†]	0.8M	90.6	94.8	96.2	91.6	90.2	68.2	85.2	92.3	
AdaMix Adapter	0.8M	90.9	95.4	97.1	92.3	91.9	70.2	89.2	92.4	

Results on GLUE with BERT-base

Model

Full Fine-tuning

Houlsby Adapter **BitFit**^{\$} Prefix-tuning[†] LoRA[†] UNIPELT (AP)¹ UNIPELT (APL AdaMix Adapter

	#Param.	Avg.
,†	110M	82.7
\mathbf{r}^{\dagger}	0.9M	83.0
	0.1M	82.3
	0.2M	82.1
	0.3M	82.2
ł	1.1M	83.1
$)^{\dagger}$	1.4M	83.5
•	0.9M	84.5

Results on E2E with GPT2-medium

Model	#Param.	BLEU	NIST	MET	ROUGE-L	CIDEr
Full Fine-tuning [†]	354.92M	68.2	8.62	46.2	71.0	2.47
Lin AdapterL [†]	0.37M	66.3	8.41	45.0	69.8	2.40
Lin Adapter [†]	11.09M	68.9	8.71	46.1	71.3	2.47
Houlsby Adapter [†]	11. 09M	67.3	8.50	46.0	70.7	2.44
$\mathrm{FT}^{Top2^{\dagger}}$	25.19M	68.1	8.59	46.0	70.8	2.41
PreLayer [†]	0.35M	69.7	8.81	46.1	71.4	2.49
LoRA [†]	0.35M	70.4	8.85	46.8	71.8	2.53
LoRA (repr.)	0.35M	69.8	8.77	46.6	71.8	2.52
AdaMix Adapter	0.42M	69.8	8.75	46.8	71.9	2.52
AdaMix LoRA	0.35M	71.0	8.89	46.8	72.2	2.54

Simple, Scalable Adaptation for Neural Machine Translation

Ankur BapnaNaveen ArivazhaganOrhan FiratGoogle AI{ankurbpn, navari, orhanf}@google.com

LORA: LOW-RANK ADAPTATION OF LARGE LAN-GUAGE MODELS

Edward Hu^{*} Yelong Shen^{*} Phillip Wallis Shean Wang Lu Wang Weizhu Chen Yuanzhi Li Microsoft Corporation {edwardhu, yeshe, phwallis, zeyuana, yuanzhil, swang, luw, wzchen}@microsoft.com yuanzhil@andrew.cmu.edu (Version 2)

Zeyuan Allen-Zhu

LoRA

- Can be applied to any Transformer-based Large Language Model
- But specifically designed for autoregressive and causal LMs like GPTx
- Just like other Transformer adapters, LoRA adds a small set of parameters for fine-tuning and keeps the original parameters frozen
- This can help a lot when LLM parameter sizes are as large as 175 billion.

LORA

- Only use adapters in the attention matrices: Q, K, V
- Each matrix is called W_p here, p for pre-trained
- Adapter methods modify W_p to be $W_p + BA$ where $B \in \mathbb{R}^{d \times r}, A \in \mathbb{R}^{r \times k}$
- Rank $r \ll \min(d, k)$
- Let BA be zero at start of training
- training)

• Scale the parameters after backpropagation by — where α is a hyperparameter set to a constant value depending on r (set to the first r in

LORA

- Initialize B to zeroes
- Initialize A using random Gaussian initialization

Initialize to zeroes

Initialize to values from random Gaussian

Model & Method	# Trainable	E2E NLG Challenge							
	Parameters	BLEU	NIST	MET	ROUGE-L	CIDEr			
GPT-2 M (FT)*	354.92M	68.2	8.62	46.2	71.0	2.47			
GPT-2 M (Adapter ^L)*	0.37M	66.3	8.41	45.0	69.8	2.40			
GPT-2 M (Adapter ^L)*	11.09M	68.9	8.71	46.1	71.3	2.47			
GPT-2 M (Adapter ^H)	11.09M	$67.3_{\pm.6}$	$8.50_{\pm.07}$	$46.0_{\pm.2}$	$70.7_{\pm .2}$	$2.44_{\pm.0}$			
GPT-2 M (FT ^{Top2})*	25.19M	68.1	8.59	46.0	70.8	2.41			
GPT-2 M (PreLayer)*	0.35M	69.7	8.81	46.1	71.4	2.49			
GPT-2 M (LoRA)	0.35M	70.4 ±.1	$8.85_{\pm.02}$	$\textbf{46.8}_{\pm.2}$	71.8 $_{\pm.1}$	$2.53_{\pm .02}$			
GPT-2 L (FT)*	774.03M	68.5	8.78	46.0	69.9	2.45			
GPT-2 L (Adapter ^L)	0.88M	$69.1_{\pm.1}$	$8.68_{\pm.03}$	$46.3_{\pm.0}$	$71.4_{\pm .2}$	$2.49_{\pm.0}$			
GPT-2 L (Adapter ^L)	23.00M	$68.9_{\pm.3}$	$8.70_{\pm.04}$	$46.1_{\pm .1}$	$71.3_{\pm.2}$	$2.45_{\pm.02}$			
GPT-2 L (PreLayer)*	0.77M	70.3	8.85	46.2	71.7	2.47			
GPT-2 L (LoRA)	0.77M	70.4 ±.1	$\textbf{8.89}_{\pm.02}$	$\textbf{46.8}_{\pm.2}$	72.0 $_{\pm.2}$	$2.47_{\pm .02}$			

*log*₁₀ # Trainable Parameters

GPT-3 175B validation accuracy vs. number of trainable parameters

MultiNLI-matched