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The Language Modeling problem

Setup

I Assume a (finite) vocabulary of words:
V = {killer , crazy , clown}

I Use V to construct an infinite set of sentences
V+ = {

clown, killer clown, crazy clown,

crazy killer clown, killer crazy clown,

. . .

}

I A sentence is defined as each s 2 V+
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The Language Modeling problem

Data

Given a training data set of example sentences s 2 V+

Language Modeling problem

Estimate a probability model:X

s2V+

p(s) = 1.0

I p(clown) = 1e-5

I p(killer) = 1e-6

I p(killer clown) = 1e-12

I p(crazy killer clown) = 1e-21

I p(crazy killer clown killer) = 1e-110

I p(crazy clown killer killer) = 1e-127

Why do we want to do this?
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Scoring Hypotheses in Speech Recognition

From acoustic signal to candidate transcriptions

Hypothesis Score
the station signs are in deep in english -14732
the stations signs are in deep in english -14735
the station signs are in deep into english -14739
the station ’s signs are in deep in english -14740
the station signs are in deep in the english -14741
the station signs are indeed in english -14757
the station ’s signs are indeed in english -14760
the station signs are indians in english -14790
the station signs are indian in english -14799
the stations signs are indians in english -14807
the stations signs are indians and english -14815
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Scoring Hypotheses in Machine Translation

From source language to target language candidates

Hypothesis Score
we must also discuss a vision . -29.63
we must also discuss on a vision . -31.58
it is also discuss a vision . -31.96
we must discuss on greater vision . -36.09
...

...
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Scoring Hypotheses in Decryption

Character substitutions on ciphertext to plaintext candidates

Hypothesis Score
Heopaj, zk ukq swjp pk gjks w oaynap? -93
Urbcnw, mx hxd fjwc cx twxf j bnlanc? -92
Wtdepy, oz jzf hlye ez vyzh l dpncpe? -91
Mjtufo, ep zpv xbou up lopx b tfdsfu? -89
Nkuvgp, fq aqw ycpv vq mpqy c ugetgv? -87
Gdnozi, yj tjp rvio oj fijr v nzxmzo? -86
Czjkve, uf pfl nrek kf befn r jvtivk? -85
Yvfgra, qb lbh jnag gb xabj n frperg? -84
Zwghsb, rc mci kobh hc ybck o gsqfsh? -83
Byijud, te oek mqdj je adem q iushuj? -77
Jgqrcl, bm wms uylr rm ilmu y qcapcr? -76
Listen, do you want to know a secret? -25
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Scoring Hypotheses in Spelling Correction

Substitute spelling variants to generate hypotheses

Hypothesis Score
... stellar and versatile acress whose combination
of sass and glamour has defined her ...

-18920

... stellar and versatile acres whose combination
of sass and glamour has defined her ...

-10209

... stellar and versatile actress whose combination
of sass and glamour has defined her ...

-9801
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T9 to English

Grover, King, & Kushler. 1998.
Reduced keyboard disambiguating computer. US Patent 5,818,437

Sequence of numbers to English

Input Hypothesis Score
46 04663 GO HOOD -24
46 04663 GO HOME -10
843 0746453
06678 07678527
0243373 0460843
096753

? ?



9

Probability models of language

Question

I Given a finite vocabulary set V
I We want to build a probability model P(s) for all s 2 V+

I But we want to consider sentences s of each length `
separately.

I Write down a new model over V+ such that P(s | `) is in the
model

I And the model should be equal to
P

s2V+ P(s).

I Write down the model
X

s2V+

P(s) = . . .
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n-gram Models

Google n-gram viewer
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Number of Parameters

How many probabilities in each n-gram model

I Assume V = {killer, crazy, clown,UNK}

Question

How many unigram probabilities: P(x) for x 2 V?

4
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Number of Parameters

How many probabilities in each n-gram model

I Assume V = {killer, crazy, clown,UNK}

Question

How many bigram probabilities: P(y |x) for x , y 2 V?

42 = 16
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Number of Parameters

How many probabilities in each n-gram model

I Assume V = {killer, crazy, clown,UNK}

Question

How many trigram probabilities: P(z |x , y) for x , y , z 2 V?

43 = 64
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Number of Parameters

Question

I Assume | V | = 50,000 (a realistic vocabulary size for English)
I What is the minimum size of training data in tokens?

I If you wanted to observe all unigrams at least once.
I If you wanted to observe all trigrams at least once.

125,000,000,000,000 (125 Ttokens)

Some trigrams should be zero since they do not occur in the
language, P(the | the, the).
But others are simply unobserved in the training data,
P(idea | colourless, green).
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Evaluating Language Models

I So far we’ve seen the probability of a sentence: P(w0, . . . ,wn)

I What is the probability of a collection of sentences, that is
what is the probability of an unseen test corpus T

I Let T = s0, . . . , sm be a test corpus with sentences si
I T is assumed to be separate from the training data used to

train our language model P(s)

I What is P(T )?
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Evaluating Language Models: Independence assumption

I T = s0, . . . , sm is the text corpus with sentences s0 through sm
I P(T ) = P(s0, s1, s2, . . . , sm) – but each sentence is

independent from the other sentences

I P(T ) = P(s0) · P(s1) · P(s2) · . . . · P(sm) =
Qm

i=0 P(si )

I P(si ) = P(w (i)
0 , . . . ,w (i)

ni ) – which can be any n-gram
language model

I A language model is better if the value of P(T ) is higher for
unseen sentences T , we want to maximize:

P(T ) =
mY

i=0

P(si )
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Evaluating Language Models: Computing the Average

I However, T can be any arbitrary size

I P(T ) will be lower if T is larger.

I Instead of the probability for a given T we can compute the
average probability.

I M is the total number of tokens in the test corpus T :

M =
mX

i=0

length(si )

I The average log probability of the test corpus T is:

1

M
log2

mY

i=0

P(si ) =
1

M

mX

i=0

log2 P(si )
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Evaluating Language Models: Perplexity

I The average log probability of the test corpus T is:

` =
1

M

mX

i=0

log2 P(si )

I Note that ` is a negative number

I We evaluate a language model using Perplexity which is 2�`
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Evaluating Language Models

Question

Show that:

2�
1
M log2

Qm
i=0 P(si ) =

1
M
pQm

i=0 P(si )
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