The Language Modeling problem

Setup

Assume a (finite) vocabulary of words:
\$\mathcal{V} = {killer, crazy, clown}\$

Use V to construct an infinite set of sentences

 V⁺ = {

 clown, killer clown, crazy clown,

 crazy killer clown, killer crazy clown,

 ...

 }

• A sentence is **defined** as each $s \in \mathcal{V}^+$

The Language Modeling problem

Data

Given a training data set of example sentences $s \in \mathcal{V}^+$

Language Modeling problem Estimate a probability model: $\sum_{s \in \mathcal{V}^+} p(s) = 1.0$

- ▶ p(clown) = 1e-5
- ▶ p(killer) = 1e-6
- p(killer clown) = 1e-12
- p(crazy killer clown) = 1e-21
 - p(crazy killer clown killer) = 1e-110

p(crazy clown killer killer) = 1e-127

Why do we want to do this?

Scoring Hypotheses in Speech Recognition

From acoustic signal to candidate transcriptions			
Hypothesis	Score		
the station signs are in deep in english	-14732		
the stations signs are in deep in english	-14735		
the station signs are in deep into english	-14739		
the station 's signs are in deep in english	-14740		
the station signs are in deep in the english	-14741		
the station signs are indeed in english	-14757		
the station 's signs are indeed in english	-14760		
the station signs are indians in english	-14790		
the station signs are indian in english	-14799		
the stations signs are indians in english	-14807		
the stations signs are indians and english	-14815		

Scoring Hypotheses in Machine Translation

From source language to target language candidates

Hypothesis	Score
we must also discuss a vision .	-29.63
we must also discuss on a vision .	-31.58
it is also discuss a vision .	-31.96
we must discuss on greater vision .	-36.09
:	:

Scoring Hypotheses in Decryption

Character substitutions on ciphertext to plaintext candidates

Hypothesis	Score
Heopaj, zk ukq swjp pk gjks w oaynap?	-93
Urbcnw, mx hxd fjwc cx twxf j bnlanc?	-92
Wtdepy, oz jzf hlye ez vyzh I dpncpe?	-91
Mjtufo, ep zpv xbou up lopx b tfdsfu?	-89
Nkuvgp, fq aqw ycpv vq mpqy c ugetgv?	-87
Gdnozi, yj tjp rvio oj fijr v nzxmzo?	-86
Czjkve, uf pfl nrek kf befn r jvtivk?	-85
Yvfgra, qb lbh jnag gb xabj n frperg?	-84
Zwghsb, rc mci kobh hc ybck o gsqfsh?	-83
Byijud, te oek mqdj je adem q iushuj?	-77
Jgqrcl, bm wms uylr rm ilmu y qcapcr?	-76
Listen, do you want to know a secret?	-25

Scoring Hypotheses in Spelling Correction

Substitute spelling variants to generate hypotheses

Hypothesis	Score
stellar and versatile acress whose combination	-18920
of sass and glamour has defined her	
stellar and versatile acres whose combination	-10209
of sass and glamour has defined her	

... stellar and versatile **actress** whose combination -9801 of sass and glamour has defined her ...

T9 to English

Grover, King, & Kushler. 1998. Reduced keyboard disambiguating computer. US Patent 5,818,437

	ABC ²	DEF
GHI	JKL	MNO
PQRS	TUV	9 WXYZ
	0	X

Sequence of numbers to English

Input		Hypothesis	Score
46 0466	3	GO HOOD	-24
46 0466	3	GO HOME	-10
843	0746453	?	?
06678	07678527		
0243373	0460843		
096753			

Probability models of language

Question

- ▶ Given a finite vocabulary set V
- ▶ We want to build a probability model P(s) for all $s \in \mathcal{V}^+$
- But we want to consider sentences s of each length l separately.
- ► Write down a new model over V⁺ such that P(s | ℓ) is in the model
- And the model should be equal to $\sum_{s \in \mathcal{V}^+} P(s)$.

Write down the model

$$\sum_{s\in\mathcal{V}^+} P(s) = \dots$$

n-gram Models

Google *n*-gram viewer

How many probabilities in each *n*-gram model

• Assume $\mathcal{V} = \{ killer, crazy, clown, UNK \}$

How many probabilities in each n-gram model

• Assume $\mathcal{V} = \{ killer, crazy, clown, UNK \}$

Question

How many bigram probabilities: P(y|x) for $x, y \in \mathcal{V}$?

$$4^2 = 16$$

How many probabilities in each n-gram model

Assume $\mathcal{V} = \{ killer, crazy, clown, UNK \}$

Question

How many trigram probabilities: P(z|x, y) for $x, y, z \in \mathcal{V}$?

 $4^3 = 64$

Question

- Assume $\mid \mathcal{V} \mid$ = 50,000 (a realistic vocabulary size for English)
- What is the minimum size of training data in tokens?
 - If you wanted to observe all unigrams at least once.
 - If you wanted to observe all trigrams at least once.

125,000,000,000,000 (125 Ttokens)

Some trigrams should be zero since they do not occur in the language, P(the | the, the). But others are simply unobserved in the training data, P(idea | colourless, green).

Evaluating Language Models

- So far we've seen the probability of a sentence: $P(w_0, \ldots, w_n)$
- What is the probability of a collection of sentences, that is what is the probability of an unseen test corpus T
- Let $T = s_0, \ldots, s_m$ be a test corpus with sentences s_i
- T is assumed to be separate from the training data used to train our language model P(s)
- What is P(T)?

Evaluating Language Models: Independence assumption

- $T = s_0, \ldots, s_m$ is the text corpus with sentences s_0 through s_m
- ▶ P(T) = P(s₀, s₁, s₂, ..., s_m) but each sentence is independent from the other sentences
- $\blacktriangleright P(T) = P(s_0) \cdot P(s_1) \cdot P(s_2) \cdot \ldots \cdot P(s_m) = \prod_{i=0}^m P(s_i)$
- ▶ $P(s_i) = P(w_0^{(i)}, ..., w_{n_i}^{(i)})$ which can be any *n*-gram language model
- A language model is better if the value of P(T) is higher for unseen sentences T, we want to maximize:

$$P(T) = \prod_{i=0}^{m} P(s_i)$$

Evaluating Language Models: Computing the Average

- ► However, *T* can be any arbitrary size
- P(T) will be lower if T is larger.
- Instead of the probability for a given T we can compute the average probability.
- ► *M* is the total number of tokens in the test corpus *T*:

$$M = \sum_{i=0}^{m} \operatorname{length}(s_i)$$

The average log probability of the test corpus T is:

$$\frac{1}{M}\log_2\prod_{i=0}^m P(s_i) = \frac{1}{M}\sum_{i=0}^m \log_2 P(s_i)$$

Evaluating Language Models: Perplexity

▶ The average *log* probability of the test corpus *T* is:

$$\ell = \frac{1}{M} \sum_{i=0}^{m} \log_2 P(s_i)$$

- ► Note that ℓ is a negative number
- We evaluate a language model using *Perplexity* which is $2^{-\ell}$

Evaluating Language Models

Question

Show that:

$$2^{-\frac{1}{M}\log_2 \prod_{i=0}^m P(s_i)} = \frac{1}{\sqrt[M]{\prod_{i=0}^m P(s_i)}}$$

Acknowledgements

Many slides borrowed or inspired from lecture notes by Michael Collins, Chris Dyer, Kevin Knight, Chris Manning, Philipp Koehn, Adam Lopez, Graham Neubig, Richard Socher and Luke Zettlemoyer from their NLP course materials.

All mistakes are my own.

A big thank you to all the students who read through these notes and helped me improve them.