
Anoop Sarkar

LLMs as few-shot learners
Advanced NLP: Summer 2023



"Language provides a natural domain for the study of artificial intelligence, as the 
vast majority of reasoning tasks can be efficiently expressed and evaluated in 
language, and the world’s text provides a wealth of data for unsupervised 
learning via generative modeling."


- OpenAI



https://openai.com/research/language-unsupervised Jun 2018

GPT1

https://openai.com/research/language-unsupervised


GPT1
Pre-training an autoregressive language model
• Start with a large amount of unlabeled data 


• Pre-training objective: Maximize the likelihood of predicting the next token


• 


• This is equivalent to training a Transformer decoder


• 


• 


• 


• Directionality is needed to generate a well-formed probability distribution 

𝒰 = {u1, …, un}

Li(𝒰) = ∑
i

log P(ui ∣ ui−k, …, ui−1; Θ)

h0 = UWe + Wp

hℓ = transformer_block(hℓ−1)∀ℓ ∈ [1,n]

P(u) = softmax(hnWT
e )

 is the context 
vector of tokens
U = (u−k, …, u−1)

 is the number of Transformer 
layers
n

 is the token embedding matrixWe

 is the position embedding matrixWp

BooksCorpus: 7K 
unpublished books 
(1B words)



This setup was for fine-tuning GPT1 but also works for in-context learning in GPT2 and GPT3.



The GPT2 paper

Feb 2019
https://cdn.openai.com/better-language-models/
language_models_are_unsupervised_multitask_learners.pdf





WebText corpus
• Train on web scale corpus but with more reliable data compared to the 

CommonCrawl.


• English-only, so language detection is used


• Outgoing links from reddit (with at least 3 karma) 


• No reddit data was used, instead use the content of the web sites linked on 
reddit discussions


• 8M documents with 40GB of text

News site scraping: https://github.com/codelucas/newspaper

Language detection: https://github.com/CLD2Owners/cld2 

https://github.com/codelucas/newspaper
https://github.com/CLD2Owners/cld2






Perplexity Results





Jan 2020https://arxiv.org/abs/2001.08361 

https://arxiv.org/abs/2001.08361


Scaling Laws for LLMs
Power laws

• A power law is a relation between two quantities:  e.g. model 
performance vs. model size.


• Number of model parameters N (excluding subword embeddings)


• Size of dataset D


• Amount of compute (MFLOPs) C


• N, D, C are dominant. Other choices in hyperparameters like width vs. depth are 
less relevant


• 1 PetaFLOP-day (PF-day) is  FLOPS

f(x) = (a/x)k

8.64 × 1019

https://openai.com/research/ai-and-compute













Power laws for test loss
• Let  represent the test loss dependent on either parameters N, or 

dataset size D or compute C


• For models with limited number of parameters: 



• For models with limited dataset size: 



• For models trained with limited compute: 

L( ⋅ )

L(N) = (Nc/N)αN; αN ≈ 0.076,Nc ≈ 8.8 × 1013(non-embd params)

L(D) = (Dc/D)αD; αD ≈ 0.095,Dc ≈ 5.4 × 1013(tokens)

L(C) = (Cmin
c /Cmin)αmin

C ; αmin
c ≈ 0.050,Cmin

c ≈ 3.1 × 108(PF-days)



S = parameter update steps



Optimal Allocation of Compute Budget



arXiv:1812.06162



Lessons from scaling LLMs

• Performance depends strongly on scale, weakly on model shape


• Performance has a power-law relationship with each of the three scale factors 
N, D, C when not bottlenecked by the other two


• Performance improves predictably as long as we scale up N and D in tandem


• Training curves follow predictable power-laws whose parameters are roughly 
independent of the model size

•Number of model parameters N 
Size of dataset D

•Amount of compute (MFLOPs) C



Lessons from scaling LLMs

• Transfer to a different distribution incurs a constant penalty but otherwise 
improves roughly in line with performance on the training set.


• Large models are more sample-efficient than small models, reaching the 
same level of performance with fewer optimization steps and using fewer data 
points


• The ideal batch size for training these models is roughly a power of the loss 
only, and continues to be determinable by measuring the gradient noise scale





Train longer on more tokens
Lessons from training Chinchilla

• From GPT3: large models should not be trained to lowest possible loss to be 
compute optimal


• Question: Given a fixed FLOPs budget how should one trade off model 
size and number of training tokens?


• Pre-training loss L(N, D) for N parameters and D training tokens. Find the 
optimal N and D values for a given compute budget.


• Empirical study on training 400 models from 70M to 16B parameters, trained 
on 5B to 400B tokens.


• Answer: Train smaller models for (a lot) more training steps.







The GPT3 paper

NeurIPS 2020, Vancouver, BChttps://arxiv.org/abs/2005.14165

https://arxiv.org/abs/2005.14165






Fine-tuning fails at scale
• LLMs >10B parameters are very difficult to fine-tune and requires a big 

compute budget


• So in-context learning using a long prompt or prefix is needed to coax the 
answer from a "predict the next token" approach to solving multiple tasks


• Pre-training on web-scale text can observe many different tasks in-context 
during training in the inner loop (per batch)


• Gradient descent improves the model representations based on next token 
prediction over many batch updates in the outer loop 















WMT 2014











https://arxiv.org/abs/2112.06905

https://arxiv.org/abs/2112.06905


Mixture of Experts (MoE) for LLMs



Mixture of Experts (MoE) for LLMs
Better effective FLOPs per token prediction in causal LMs



https://arxiv.org/abs/2204.02311

https://arxiv.org/abs/2204.02311


https://arxiv.org/abs/2202.12837

https://arxiv.org/abs/2202.12837


ground truth 
labels don't 

matter!



ground truth 
labels



replace true labels with 
random labels



Why does in-context learning work?
Four hypotheses

1. The input-label mapping, whether each input  is paired with the correct 
label  (not true)


2. The distribution that the input  are from (is it from a sports article, or 
business news?)


3. The output label space 


4. The format of the demonstration, e.g. x // y; Input: x Output: y; etc.

xi
yi

x1, …, xk

y1, …, yk





The input distribution matters: using 
inputs from an out of domain corpus 

causes a large performance drop



The output distribution matters: using 
labels that are random English unigrams 

causes a large performance drop







From LLMs to Helpful Assistants

https://www.youtube.com/watch?v=bZQun8Y4L2A

How to build chatGPT from an LLM base model

https://www.youtube.com/watch?v=bZQun8Y4L2A


https://openai.com/research/instruction-following

https://openai.com/research/instruction-following


https://arxiv.org/abs/2203.02155

https://arxiv.org/abs/2203.02155


https://openai.com/research/instruction-following





Supervised Fine-Tuning













Supervised Fine-tuning
• Data collected from human experts on Mechanical Turk or equivalent


• Detailed instructions are provided to obtain a high quality dataset


• Fine-tune GPT model on this data to maximize next token prediction loss



Reward Model Dataset
https://github.com/openai/following-instructions-human-feedback







Reward Model Training





Reward Model Training
• Let  be the parameters for the <reward> token which is appended at the end of each completion


• Data: Prompt | Completion | <reward>


• K is the number of responses ranked by humans (K={4,9}).  is the dataset of human comparisons


• This produces  comparisons for each prompt 


•
Loss function: 


•  is the scalar reward for prompt  and completion .  is preferred to 


• Train all  comparisons in a single batch. 


• Training the 175B model does not work, instead fine-tune a smaller 6B model to predict reward.

θ

D

(K
2 )

loss(θ) = −
1

(K
2 )

E(x,yw,yl)∼D[log(σ(rθ(x, yw) − rθ(x, yl)))]

rθ(x, y) x y yw yl

(K
2 )



Reinforcement Learning





• Let  be the parameters for the language model. 


• Parameters for the <reward> token are kept frozen.


•  is the learned RL policy


•  is the learned supervised fine-tuning model


•  is the KL reward coefficient


• Training (probably) uses an actor-critic algorithm for training the  parameters

ϕ

πRL
ϕ

πSFT

β

ϕ



Why RLHF?





https://openai.com/research/instruction-following



https://openai.com/research/instruction-following



Why RLHF?
• It is often easier to discriminate than generate


• Simple example: It is much easier to spot a bad haiku than generate one


• Writing a haiku or writing a summary or writing a story from scratch is a 
difficult task for humans.


• Humans are better at picking a good example by comparing to other 
examples.



Problems with RLHF
• Mode Collapse


• Fine-tuned models lose entropy compared to original LLM (base model)


• RLHF models confidently output very few variations


• Base models can be better at tasks that require diverse outputs

https://www.lesswrong.com/posts/t9svvNPNmFf5Qa3TA/mysteries-of-mode-collapse





RLHF vs. Base LM
• Labelers significantly prefer InstructGPT outputs over outputs from GPT-3


• InstructGPT models show improvements in truthfulness over GPT-3 (on the 
Truthful QA task)


• InstructGPT shows small improvements in toxicity over GPT-3, but not bias 
(on the RealToxicityPrompts dataset)


• Can minimize performance regressions on public NLP datasets by modifying 
our RLHF fine-tuning procedure (by mixing in the pretrained distribution)



RLHF vs. Base LM

• Our models generalize to the preferences of “held-out” labelers that did not 
produce any training data


• Public NLP datasets are not reflective of how our language models are used


• InstructGPT models show promising generalization to instructions outside of 
the RLHF fine- tuning distribution


• InstructGPT still makes simple mistakes


