
Anoop Sarkar

LLMs as few-shot learners
Advanced NLP: Summer 2023

"Language provides a natural domain for the study of artificial intelligence, as the
vast majority of reasoning tasks can be efficiently expressed and evaluated in
language, and the world’s text provides a wealth of data for unsupervised
learning via generative modeling."

- OpenAI

https://openai.com/research/language-unsupervised Jun 2018

GPT1

https://openai.com/research/language-unsupervised

GPT1
Pre-training an autoregressive language model
• Start with a large amount of unlabeled data

• Pre-training objective: Maximize the likelihood of predicting the next token

•

• This is equivalent to training a Transformer decoder

•

•

•

• Directionality is needed to generate a well-formed probability distribution

𝒰 = {u1, …, un}

Li(𝒰) = ∑
i

log P(ui ∣ ui−k, …, ui−1; Θ)

h0 = UWe + Wp

hℓ = transformer_block(hℓ−1)∀ℓ ∈ [1,n]

P(u) = softmax(hnWT
e)

 is the context
vector of tokens
U = (u−k, …, u−1)

 is the number of Transformer
layers
n

 is the token embedding matrixWe

 is the position embedding matrixWp

BooksCorpus: 7K
unpublished books
(1B words)

This setup was for fine-tuning GPT1 but also works for in-context learning in GPT2 and GPT3.

The GPT2 paper

Feb 2019
https://cdn.openai.com/better-language-models/
language_models_are_unsupervised_multitask_learners.pdf

WebText corpus
• Train on web scale corpus but with more reliable data compared to the

CommonCrawl.

• English-only, so language detection is used

• Outgoing links from reddit (with at least 3 karma)

• No reddit data was used, instead use the content of the web sites linked on
reddit discussions

• 8M documents with 40GB of text

News site scraping: https://github.com/codelucas/newspaper

Language detection: https://github.com/CLD2Owners/cld2

https://github.com/codelucas/newspaper
https://github.com/CLD2Owners/cld2

Perplexity Results

Jan 2020https://arxiv.org/abs/2001.08361

https://arxiv.org/abs/2001.08361

Scaling Laws for LLMs
Power laws

• A power law is a relation between two quantities: e.g. model
performance vs. model size.

• Number of model parameters N (excluding subword embeddings)

• Size of dataset D

• Amount of compute (MFLOPs) C

• N, D, C are dominant. Other choices in hyperparameters like width vs. depth are
less relevant

• 1 PetaFLOP-day (PF-day) is FLOPS

f(x) = (a/x)k

8.64 × 1019

https://openai.com/research/ai-and-compute

Power laws for test loss
• Let represent the test loss dependent on either parameters N, or

dataset size D or compute C

• For models with limited number of parameters:

• For models with limited dataset size:

• For models trained with limited compute:

L(⋅)

L(N) = (Nc/N)αN; αN ≈ 0.076,Nc ≈ 8.8 × 1013(non-embd params)

L(D) = (Dc/D)αD; αD ≈ 0.095,Dc ≈ 5.4 × 1013(tokens)

L(C) = (Cmin
c /Cmin)αmin

C ; αmin
c ≈ 0.050,Cmin

c ≈ 3.1 × 108(PF-days)

S = parameter update steps

Optimal Allocation of Compute Budget

arXiv:1812.06162

Lessons from scaling LLMs

• Performance depends strongly on scale, weakly on model shape

• Performance has a power-law relationship with each of the three scale factors
N, D, C when not bottlenecked by the other two

• Performance improves predictably as long as we scale up N and D in tandem

• Training curves follow predictable power-laws whose parameters are roughly
independent of the model size

•Number of model parameters N
Size of dataset D

•Amount of compute (MFLOPs) C

Lessons from scaling LLMs

• Transfer to a different distribution incurs a constant penalty but otherwise
improves roughly in line with performance on the training set.

• Large models are more sample-efficient than small models, reaching the
same level of performance with fewer optimization steps and using fewer data
points

• The ideal batch size for training these models is roughly a power of the loss
only, and continues to be determinable by measuring the gradient noise scale

Train longer on more tokens
Lessons from training Chinchilla

• From GPT3: large models should not be trained to lowest possible loss to be
compute optimal

• Question: Given a fixed FLOPs budget how should one trade off model
size and number of training tokens?

• Pre-training loss L(N, D) for N parameters and D training tokens. Find the
optimal N and D values for a given compute budget.

• Empirical study on training 400 models from 70M to 16B parameters, trained
on 5B to 400B tokens.

• Answer: Train smaller models for (a lot) more training steps.

The GPT3 paper

NeurIPS 2020, Vancouver, BChttps://arxiv.org/abs/2005.14165

https://arxiv.org/abs/2005.14165

Fine-tuning fails at scale
• LLMs >10B parameters are very difficult to fine-tune and requires a big

compute budget

• So in-context learning using a long prompt or prefix is needed to coax the
answer from a "predict the next token" approach to solving multiple tasks

• Pre-training on web-scale text can observe many different tasks in-context
during training in the inner loop (per batch)

• Gradient descent improves the model representations based on next token
prediction over many batch updates in the outer loop

WMT 2014

https://arxiv.org/abs/2112.06905

https://arxiv.org/abs/2112.06905

Mixture of Experts (MoE) for LLMs

Mixture of Experts (MoE) for LLMs
Better effective FLOPs per token prediction in causal LMs

https://arxiv.org/abs/2204.02311

https://arxiv.org/abs/2204.02311

https://arxiv.org/abs/2202.12837

https://arxiv.org/abs/2202.12837

ground truth
labels don't

matter!

ground truth
labels

replace true labels with
random labels

Why does in-context learning work?
Four hypotheses

1. The input-label mapping, whether each input is paired with the correct
label (not true)

2. The distribution that the input are from (is it from a sports article, or
business news?)

3. The output label space

4. The format of the demonstration, e.g. x // y; Input: x Output: y; etc.

xi
yi

x1, …, xk

y1, …, yk

The input distribution matters: using
inputs from an out of domain corpus

causes a large performance drop

The output distribution matters: using
labels that are random English unigrams

causes a large performance drop

From LLMs to Helpful Assistants

https://www.youtube.com/watch?v=bZQun8Y4L2A

How to build chatGPT from an LLM base model

https://www.youtube.com/watch?v=bZQun8Y4L2A

https://openai.com/research/instruction-following

https://openai.com/research/instruction-following

https://arxiv.org/abs/2203.02155

https://arxiv.org/abs/2203.02155

https://openai.com/research/instruction-following

Supervised Fine-Tuning

Supervised Fine-tuning
• Data collected from human experts on Mechanical Turk or equivalent

• Detailed instructions are provided to obtain a high quality dataset

• Fine-tune GPT model on this data to maximize next token prediction loss

Reward Model Dataset
https://github.com/openai/following-instructions-human-feedback

Reward Model Training

Reward Model Training
• Let be the parameters for the <reward> token which is appended at the end of each completion

• Data: Prompt | Completion | <reward>

• K is the number of responses ranked by humans (K={4,9}). is the dataset of human comparisons

• This produces comparisons for each prompt

•
Loss function:

• is the scalar reward for prompt and completion . is preferred to

• Train all comparisons in a single batch.

• Training the 175B model does not work, instead fine-tune a smaller 6B model to predict reward.

θ

D

(K
2)

loss(θ) = −
1

(K
2)

E(x,yw,yl)∼D[log(σ(rθ(x, yw) − rθ(x, yl)))]

rθ(x, y) x y yw yl

(K
2)

Reinforcement Learning

• Let be the parameters for the language model.

• Parameters for the <reward> token are kept frozen.

• is the learned RL policy

• is the learned supervised fine-tuning model

• is the KL reward coefficient

• Training (probably) uses an actor-critic algorithm for training the parameters

ϕ

πRL
ϕ

πSFT

β

ϕ

Why RLHF?

https://openai.com/research/instruction-following

https://openai.com/research/instruction-following

Why RLHF?
• It is often easier to discriminate than generate

• Simple example: It is much easier to spot a bad haiku than generate one

• Writing a haiku or writing a summary or writing a story from scratch is a
difficult task for humans.

• Humans are better at picking a good example by comparing to other
examples.

Problems with RLHF
• Mode Collapse

• Fine-tuned models lose entropy compared to original LLM (base model)

• RLHF models confidently output very few variations

• Base models can be better at tasks that require diverse outputs

https://www.lesswrong.com/posts/t9svvNPNmFf5Qa3TA/mysteries-of-mode-collapse

RLHF vs. Base LM
• Labelers significantly prefer InstructGPT outputs over outputs from GPT-3

• InstructGPT models show improvements in truthfulness over GPT-3 (on the
Truthful QA task)

• InstructGPT shows small improvements in toxicity over GPT-3, but not bias
(on the RealToxicityPrompts dataset)

• Can minimize performance regressions on public NLP datasets by modifying
our RLHF fine-tuning procedure (by mixing in the pretrained distribution)

RLHF vs. Base LM

• Our models generalize to the preferences of “held-out” labelers that did not
produce any training data

• Public NLP datasets are not reflective of how our language models are used

• InstructGPT models show promising generalization to instructions outside of
the RLHF fine- tuning distribution

• InstructGPT still makes simple mistakes

