LLMs as few-shot learners

Advanced NLP: Summer 2023

Anoop Sarkar



"Language provides a natural domain for the study of artificial intelligence, as the
vast majority of reasoning tasks can be efficiently expressed and evaluated In
language, and the world’s text provides a wealth of data for unsupervised
learning via generative modeling."

- OpenAl
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GPT1

Pre-training an autoregressive language model BooksCorpus: 7K
unpublished books

- Start with a large amount of unlabeled data % = {u;,...,u,} (1B words)

* Pre-training objective: Maximize the likelihood of predicting the next token

L(U) = Z logP(u | u,_y,...,u;._q;0) U= (u_,,...,u_,)is the context

vector of tokens

* This is equivalent to training a Transformer decoder j; is the number of Transformer

layers

W, is the token embedding matrix
e h, = transformer_block(#,_,)VZ € [1,n]

W, is the position embedding matrix
e P(u) = softmax(h .

* Directionality is needed to generate a well-formed probability distribution



Text Task oL .
Prediction | Classifier Classification Start Text Extract | | Transformer F| Linear
Entailment Start Premise Delim | Hypothesis | Extract | — Transformer — Linear
Layer Norm 3
Feed Forward Start Text 1 Delim Text 2 Extract | > Transformer
I Similarity - + Linear
12x — .
| Start Text 2 Delim Text 1 Extract | Transformer
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é< . Start Context Delim Answer 1 | Extract | = Transformer — Linear
Masked Multi 3
Self Attention —
1 Multiple Choice | Start Context Delim Answer 2 Extract |l Transformer | Linear {
Text & Position Embed Start Context Delim | Answer N | Extract | > Transformer ( Linear

This setup was for fine-tuning GPT1 but also works for in-context learning in GPT2 and GPTS3.



The GPT2 paper

Language Models are Unsupervised Multitask Learners

Alec Radford *' Jeffrey Wu ! Rewon Child! David Luan'! Dario Amodei *'! Ilya Sutskever *!

https://cdn.openai.com/better-language-models/
language_models_are_unsupervised_multitask_learners.pdf Feb 2019
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WebText corpus

* Train on web scale corpus but with more reliable data compared to the
CommonCrawl.

* English-only, so language detection Is used
* QOutgoing links from reddit (with at least 3 karma)

* No reddit data was used, instead use the content of the web sites linked on
reddit discussions

e 8M documents with 40GB of text

Language detection: https://qgithub.com/CLD20wners/cld2

News site scraping: https://qgithub.com/codelucas/newspaper



https://github.com/codelucas/newspaper
https://github.com/CLD2Owners/cld2

”’I’m not the cleverest man 1n the world, but like they say 1n
French: Je ne suis pas un imbecile [I’m not a fool].

In a now-deleted post from Aug. 16, Soheil Eid, Tory candidate
in the riding of Joliette, wrote in French: "Mentez mentez,
il en restera toujours quelque chose,” which translates as,
’Lie lie and something will always remain.”

“I hate the word ‘perfume,”” Burr says. ‘It’s somewhat better
in French: ‘parfum.’

If listened carefully at 29:55, a conversation can be heard
between two guys in French: “~-Comment on fait pour aller
de Pautre coté? -Quel autre coté?”’, which means “- How
do you get to the other side? - What side?”.

If this sounds like a bit of a stretch, consider this ques-
tion in French: As-tu aller au cinéma?, or Did you go to
the movies?, which literally translates as Have-you to go to
movies/theater?

“Brevet Sans Garantie Du Gouvernement”, translated to
English: “Patented without government warranty”.

Table 1. Examples of naturally occurring demonstrations of En-
glish to French and French to English translation found throughout
the WebText training set.



Parameters Layers dimodel

117M 12 768
345M 24 1024
762M 36 1280

1542M 43 1600

Table 2. Architecture hyperparameters for the 4 model sizes.



Perplexity Results

LAMBADA LAMBADA CBT-CN CBT-NE WikiText2 PTB enwik8 text8 WikiTextl03 1BW

(PPL) (ACC) (ACC) (ACC) (PPL) (PPL) (BPB)  (BPC) (PPL) (PPL)
SOTA 99.8 59.23 85.7 82.3 39.14 46.54  0.99 1.08 18.3 21.8
117M 35.13 45.99 87.65 83.4 2941 65.85 1.16 1.17 37.50 75.20
345M 15.60 55.48 92.35 87.1 22.76 47.33 1.01 1.06 26.37 55.72
762M 10.87 60.12 93.45 88.0 19.93 40.31 0.97 1.02 22.05 44.575

1542M 8.63 63.24 93.30 89.05 18.34 35.76 0.93 0.98 17.48 42.16
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Figure 3. Performance on the Winograd Schema Challenge as a
function of model capacity.
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Scaling Laws for LLMs

Power laws

. A power law is a relation between two quantities: f(x) = (a/x)* e.g. model
performance vs. model size.

 Number of model parameters N (excluding subword embeddings)
» Size of dataset D
 Amount of compute (MFLOPs) C

N, D, C are dominant. Other choices in hyperparameters like width vs. depth are
less relevant

+ 1 PetaFLOP-day (PF-day) is 8.64 x 10'° FLOPS

https://openai.com/research/ai-and-compute



Operation Parameters FLOPs per Token

Embed (Mvocab + Mectx) @model 4dmodel

Attention: QKV Nayer@model3@attn 2Nayerdmodel3dattn

Attention: Mask = 2NayerNetxBattn

Attention: Project Nayer@attndmodel 2Nayer@attndembd

Feedforward Nlayer 28 model AfF 2N1ayer 2dmodel Aft

De-embed — 2dmodelMvocab

Total (Non-Embedding) | N = 2dnodelMayer (2dattn + di) | Crorward = 2N + 2njayerNctx@attn

Table 1 Parameter counts and compute (forward pass) estimates for a Transformer model. Sub-leading
terms such as nonlinearities, biases, and layer normalization are omitted.
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.



Larger models require fewer samples The optimal model size grows smoothly
to reach the same performance with the loss target and compute budget
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Figure 2 We show a series of language model training runs, with models ranging in size from 10° to 10”
parameters (excluding embeddings).
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Figure 3 As more compute becomes available, we can choose how much to allocate towards training larger
models, using larger batches, and training for more steps. We 1illustrate this for a billion-fold increase in
compute. For optimally compute-efficient training, most of the increase should go towards increased model
size. A relatively small increase 1n data 1s needed to avoid reuse. Of the increase 1n data, most can be used to
increase parallelism through larger batch sizes, with only a very small increase 1n serial training time required.



Power laws for test loss

» Let L( - ) represent the test loss dependent on either parameters N, or
dataset size D or compute C

 For models with limited number of parameters:
L(N) = (N./N)*™; ay ~ 0.076,N,. ~ 8.8 X 103 (non-embd params)

e For models with limited dataset size:
L(D) = (D./D)*r;ap ~ 0.095,D,. ~ 5.4 X 103 (tokens)

 For models trained with limited compute:

L(C) = (C™Mn/C, . " a™" 2 0.050,C™" =~ 3.1 x 103(PF-days)

min
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Critical Batch Size vs. Performance

Ay +243" —— Embpirical Ber, N = 3M

o —o— Empirical Bqit, N =85M
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Figure 10 The critical batch size B.,i; follows a power law 1n the loss as performance increase, and does
not depend directly on the model size. We find that the critical batch size approximately doubles for every
13% decrease in loss. B, is measured empirically from the data shown in Figure W but it 1s also roughly
predicted by the gradient noise scale, as in [MKAT18]. 5/xiy-1812 06162



Lessons from scaling LLMs

*Number of model parameters N

Size of dataset D

* Amount of compute (MFLOPs) C

Performance depends strongly on scale, weakly on model shape

Performance has a power-law relationship with each of the three scale factors
N, D, C when not bottlenecked by the other two

Performance improves predictably as long as we scale up N and D in tandem

Training curves follow predictable power-laws whose parameters are roughly
independent of the model size



Lessons from scaling LLMs

* [ransfer to a different distribution incurs a constant penalty but otherwise
iImproves roughly in line with performance on the training set.

* |Large models are more sample-efficient than small models, reaching the
same level of performance with fewer optimization steps and using fewer data

points

 The ideal batch size for training these models is roughly a power of the loss
only, and continues to be determinable by measuring the gradient noise scale



@ DeepMind

Training Compute-Optimal Large Language Models

Jordan Hoffmann*, Sebastian Borgeaud*, Arthur Mensch*, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan,
Erich Elsen, Jack W. Rae, Oriol Vinyals and Laurent Sifre*



Train longer on more tokens

Lessons from training Chinchilla

 From GPT3: large models should not be trained to lowest possible loss to be
compute optimal

* Question: Given a fixed FLOPs budget how should one trade off model
size and number of training tokens?

* Pre-training loss L(N, D) for N parameters and D training tokens. Find the
optimal N and D values for a given compute budget.

 Empirical study on training 400 models from 70M to 16B parameters, trained
on 5B to 400B tokens.

 Answer: Train smaller models for (a lot) more training steps.
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Model

Size (# Parameters) Training Tokens

LaMDA (Thoppilan et al., 2022)
GPT-3 (Brown et al., 2020)
Jurassic (Lieber et al., 2021)
Gopher (Rae et al., 2021)

MT-NLG 530B (Smith et al., 2022)

137 Billion
175 Billion
178 Billion
280 Billion
530 Billion

168 Billion
300 Billion
300 Billion
300 Billion
270 Billion

Chinchilla

70 Billion

1.4 Trillion



The GPT3 paper

Language Models are Few-Shot Learners
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Traditional fine-tuning (not used for GPT-3)

Fine-tuning
The model is trained via repeated gradient updates using a
large corpus of example tasks.

1 sea otter => loutre de mer «—— example #1

gradient update

1 peppermint => menthe poivrée «—— example #2

gradient update

N\

1 plush giraffe => girafe peluche < example #N

gradient update

1 cheese => «—— prompt



Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French:

cheese => prompt

One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer example

cheese => prompt

task description

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer examples
peppermint => menthe poivreée

plush girafe => girafe peluche

cheese => prompt



Fine-tuning fails at scale

 LLMs >10B parameters are very difficult to fine-tune and requires a big
compute budget

* S0 in-context learning using a long prompt or prefix is needed to coax the
answer from a "predict the next token" approach to solving multiple tasks

* Pre-training on web-scale text can observe many different tasks in-context
during training in the inner loop (per batch)

 (Gradient descent improves the model representations based on next token
prediction over many batch updates in the outer loop



outer loop

/\

Learning via SGD during unsupervised pre-training ;
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- - -
3 +4 =17 Q fsih => fish Q wall => mur Q
S+ 9 =14 dcuk => duck otter => loutre
K\\\_ 9 +8 =17 cmihp => chimp bread => pain

sequence #1

sequence #2

sequence #3



Accuracy (%)

Zero-shot

l

60
50

40

30

One-shot Few-shot

“/\
\L /
Natural Language ST
Prompt | 4

10 10
Number of Examples in Context (K)

175B Params

-~ 13B Params




SuperGLUE Score
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Performance on SuperGLUE increases with number of examples in context. We find the differ-
ence 1n performance between the BERT-Large and BERT++ to be roughly equivalent to the difference
between GPT-3 with one example per context versus eight examples per context.



SuperGLUE  BoolQ CB CB COPA RTE

Average Accuracy Accuracy F1  Accuracy Accuracy
Fine-tuned SOTA 89.0 91.0 96.9 93.9 94.8 92.5
Fine-tuned BERT-Large 69.0 77.4 83.6 75.7 70.6 71.7
GPT-3 Few-Shot 71.8 76.4 75.6 52.0 92.0 69.0

WiC WSC MultiRC MultiRC ReCoRD ReCoRD

Accuracy Accuracy Accuracy Fla Accuracy F1

Fine-tuned SOTA 76.1 93.8 62.3 38.2 92.5 93.3
Fine-tuned BERT-Large 69.6 64.6 24.1 70.0 71.3 72.0
GPT-3 Few-Shot 49.4 30.1 30.5 75.4 90.2 91.1

Table 3.5: Performance of GPT-3 on SuperGLUE compared to fine-tuned baselines and SOTA. All
results are reported on the test set. GPT-3 few-shot 1s given a total of 32 examples within the context
of each task and performs no gradient updates.



LAMBADA LAMBADA StoryCloze HellaSwag
Setting (acc) (ppl) (acc) (acc)
SOTA 68.0¢ 8.63° 91.8¢ 85.6¢
GPT-3 Zero-Shot 76.2 3.00 83.2 78.9
GPT-3 One-Shot 72.5 3.35 84.7 78.1
GPT-3 Few-Shot 36.4 1.92 87.7 79.3



Setting

NaturalQS WebQS TrnviaQA

RAG (Fine-tuned, Open-Domain) [LPP*20] 44.5 435.5 638.0
T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20] 36.6 44.7 60.5
T5-11B (Fine-tuned, Closed-Book) 34.5 37.4 50.1
GPT-3 Zero-Shot 14.6 14.4 64.3
GPT-3 One-Shot 23.0 25.3 68.0
GPT-3 Few-Shot 29.9 41.5 71.2
Setting ARC (Easy) ARC (Challenge) CoQA DROP
Fine-tuned SOTA  92.0¢ 78.5° 90.7° 89.1¢
GPT-3 Zero-Shot 68.8 51.4 81.5 23.6
GPT-3 One-Shot 71.2 53.2 84.0 34.3

GPT-3 Few-Shot  70.1 51.5 85.0 36.5



WMT 2014

Setting En—Fr Fr—En En—De De—En En—Ro Ro—En
SOTA (Supervised)  45.6*  35.0° 41.2¢ 40.2¢ 38.5¢ 39.9¢
XLM [LC19] 33.4 33.3 26.4 34.3 33.3 31.8
MASS [STQ ™ 19] 37.5 34.9 28.3 35.2 35.2 33.1
mBART [LGG ™ 20] - - 29.8 34.0 35.0 30.5
GPT-3 Zero-Shot 25.2 21.2 24.6 27.2 14.1 19.9
GPT-3 One-Shot 28.3 33.7 26.2 30.4 20.6 38.6
GPT-3 Few-Shot 32.6 39.2 29.7 40.6 21.0 39.5
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Figure 7.2: Total compute used during training. Based on the analysis in Scaling Laws For Neural
Language Models [KMH20] we train much larger models on many fewer tokens than is typical.
As a consequence, although GPT-3 3B is almost 10x larger than RoOBERTa-Large (355M params),

both models took roughly 50 petafiop/s-days of compute during pre-training. Methodology for these
calculations can be found in the Appendix.



GLaM: Efficient Scaling of Language Models with Mixture-of-Experts
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Mixture of Experts (MoE) for LLMs

[ Encoder output ]
— Add &TNorm
Feed For:/vard FFN
“ N
— Add &I Norm Figure 2. GLaM model architecture. Each MoE layer (the bottom
| (__Mukti-Head Attention block) 1s interleaved with a Transformer layer (the upper block).
‘{ For each input token, e.g., ‘roses’, the Gating module dynamically
— Add & Norm selects two most relevant experts out of 64, which is represented
== —— by the blue grid in the MoE layer. The weighted average of the
) outputs from these two experts will then be passed to the upper
k [Gaj"g) Transformer layer. For the next token in the input sequence, two
— Add & Norm different experts will be selected.

I
Multi-Head Attention
‘ )
Input & Positional embeddings

I
roses are red violets are blue




Mixture of Experts (MoE) for LLMs

Better effective FLOPs per token prediction in causal LMs
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Reiner Pope James Bradbury Jacob Austin Michael Isard Guy Gur-Ari
Pengcheng Yin Toju Duke Anselm Levskaya Sanjay Ghemawat Sunipa Dev
Henryk Michalewski Xavier Garcia Vedant Misra Kevin Robinson Liam Fedus
Denny Zhou Daphne Ippolito David Luan* Hyeontaek Lim Barret Zoph
Alexander Spiridonov Ryan Sepassi David Dohan Shivani Agrawal Mark Omernick
Andrew M. Dai Thanumalayan Sankaranarayana Pillai Marie Pellat Aitor Lewkowycz
Erica Moreira Rewon Child Oleksandr Polozov! Katherine Lee Zongwei Zhou
Xuezhi Wang Brennan Saeta Mark Diaz Orhan Firat Michele Catasta’ Jason Wei
Kathy Meier-Hellstern Douglas Eck Jeff Dean Slav Petrov Noah Fiedel

https://arxiv.org/abs/2204.02311 Google Research
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Rethinking the Role of Demonstrations:
What Makes In-Context Learning Work?

Sewon Min!* Xinxi Lyu!  Ari Holtzman' @ Mikel Artetxe?
Mike Lewis’  Hannaneh Hajishirzi'®> Luke Zettlemoyer'-

I University of Washington “Meta Al °Allen Institute for Al

https://arxiv.org/abs/2202.12837
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Classification

"2 No Demos ' Demos w/ gold labels 5% Demos w/ random labels

MetalCL (774M) GPT-] (6B) GPI-3 (175B)
Multi-choice

"2 No Demos ' Demos w/ gold labels i Demos w/ random labels

MetalCL (774M) GPT-] (6B) GPT-3 (175B)

round truth

fabels don't

e B )

matter!




ground truth

labels

Circulation revenue has increased by 5% in Finland. \n Positive
Panostaja did not disclose the purchase price. \n Neutral
Paying off the national debt will be extremely painful. \n Negative
The company anticipated its operating profit to improve. \n

Positive m



replace true labels with
random labels

Circulation revenue has increased by 5% in Finland. \n Neutral
Panostaja did not disclose the purchase price. \n Negative
Paying off the national debt will be extremely painful. \n Positive
The company anticipated its operating profit to improve. \n

:

v

Positive m




Why does in-context learning work?

Four hypotheses

1. The input-label mapping, whether each input Xx; is paired with the correct
label y; (not true)

2. The distribution that the input X, ..., x; are from (is it from a sports article, or
business news?)

3. The output label space yy, ..., y;

4. The format of the demonstration, e.g. x // y; Input: x Output: vy; etc.



Demonstrations ;s ipytion of inputs Label space

I Circulation revenue has increased by 5% in Finland. \n Positive
— Format
Panostaja did not disclose the purchase price. \n Neutral (T he use
Paying off the national debt will be extremely painful. \n Negative Of pairs)
Test example Input-label mapping

The acquisition will have an immediate positive impact. \n ?




Colour-printed lithograph. Very good condition. \n Neutral

Many accompanying marketing ... meaning. \n Negative
In case you are interested in learning more about ... \n Positive
The company anticipated its operating profit to improve. \n

:

*Randomly Sampled from CC News m

Neutral m

The input distribution matters: using

inputs from an out of domain corpus
causes a large performance drop




Circulation revenue has increased by 5% in Finland. \n Unanimity
Panostaja did not disclose the purchase price. \n Wave
Paying off the national debt will be extremely painful. \n Guana
The company anticipated its operating profit to improve. \n

+ *Random English unigrams

}

Neutral m

The output distribution matters: using

labels that are random English unigrams
causes a large performance drop




Input distribution Output space

| Circulation revenue has increased by 5% in Finland. \n Neutral |

| Panostaja did not disclose the purchase price. \n Negative ‘ Format

| Paying off the national debt will be extremely painful. \n Positive \

\__/V
ot Tk Gapping

Random outputs add noise,
but doesn’t remove all signals




Training examples (truncated) Test input and predictions

beet: sport monkey: plant/vegetable -

golf: animal panda: plant/vegetable -

horse: plant/vegetable cucumber: sport v

peas: sport v

rn: rt
-0 >PE baseball: animal ~

football: animal

tennis: animal v

An example synthetic task with unusual semantics that GPT-3 can successfully learn. A modified figure from Rong.



From LLMs to Helpful Assistants

How to build chatGPT from an LLM base model

https://www.youtube.com/watch?v=bZQun8Y4| 2A



https://www.youtube.com/watch?v=bZQun8Y4L2A

Prompt - Explain the moon landing to a 6 year old in a few sentences.

Completion GPT-3

Explain the theory of gravity to a 6 year old.
Explain the theory of relativity to a 6 year old in a few sentences.
Explain the big bang theory to a 6 year old.

Explain evolution to a 6 year old.

InstructGPT

People went to the moon, and they took pictures of what they saw,
and sent them back to the earth so we could all see them.

https.//openai.com/research/instruction-following



https://openai.com/research/instruction-following

Training language models to follow instructions
with human feedback

Long Ouyang® Jeff Wu* Xu Jiang®  Diogo Almeida* Carroll L. Wainwright*
Pamela Mishkin®* Chong Zhang Sandhini Agarwal Katarina Slama  Alex Ray
John Schulman Jacob Hilton Fraser Kelton Luke Miller Maddie Simens
Amanda Askell’ Peter Welinder Paul Christiano*"

Jan Leike* Ryan Lowe”

OpenAl

https://arxiv.org/abs/2203.02155



https://arxiv.org/abs/2203.02155

Step 1

Collect demonstration data,
and train a supervised policy.

A promptis

sampled from our
prompt dataset.

Explain the moon
landing to a 6 year old

|
|

A labeler
demonstrates the @
desired output
havi V4
be avior. Some people went
to the moon...
I
Y
This data is used SFT
to fine-tune GPT-3 958,
| | e
with supervised \,\se{/
learning. Y,
D2 E

https://openai.com/research/instruction-following

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

.

Explain the moon

landing to a 6 year old

A B

Explain gravity...

C D

Moon is natural
satellite of...

Explain war...

People went to
the moon...

J/

0-0-

Y
e}

0-0

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
iIs sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

»

Write a story
about frogs




Stage

Dataset

Algorithm

Model

Notes

GPT Assistant training pipeline

Pretraining Supervised Finetuning Reward Modeling
: : S - @
Raw Internet Demonstrations o Comparisons A

100K —1M comparisons
written by contractors
low quantity, high quality

Binary classification
predict rewards consistent w
preferences

Ideal Assistant responses,
~10-100K (prompt, response)
written by contractors

low quantity, high quality

text trillions of words
low-quality, large quantity

Language modeling
predict the next token

Language modeling
predict the next token

© O “ O O
from from

Base model SFT model RM model

1000s of GPUs 1-100 GPUs 1-100 GPUs

days of training days of training
ex: Vicuna-13B

can deploy this model

months of training
ex: GPT, LLaMA, PaLM

can deploy this model

Reinforcement Learning

Prompts @
~10K-100K prompts »
written by contractors

low quantity, high quality

Reinforcement Learning
generate tokens that maximize
the reward

init from SFT
use RM

RL model

1-100 GPUs

days of training

ex: ChatGPT, Claude
can deploy this model




Supervised Fine-Tuning



Prompt:

"Can you write a short introduction about the relevance of the
term "monopsony” 1n economics? Please use examples related to
potential monopsonies in the labour market and cite relevant
reseaxch.”

Response:

Monopsony"” refers to a market structure where there is only
one buyer for a particular good or service. In economics, this
term 1s particularly relevant in the labor market, where a
monopsony employer has significant power over the wages and
working conditions of their employees. The presence of a
monopsony can result in lower wages and reduced employment
opportunities for workers, as the employer has little incentive
to 1ncrease wages or provide better working conditions. Recent
research has identified potential monopsonies in industries
such as retail and fast food, where a few large companies
control a significant portion of the market (Bivens & Mishel,
2013). In these industries, workers often face low wages,
limited benefits, and reduced bargaining power, leading to a
situation where they are dependent on the employer for theix
livelihood. This dependence can result in further suppression
of wages and a decline i1n working conditions. Overall, the
concept of monopsony 1s essential to understanding the dynamics
of labor markets and the impact of market power on workers.
Further research 1s needed to understand the extent and impact
of monopsonies on the economy and to develop policies to
address this 1ssue. References: Bivens, J., & Mishel, L.
(2013). The Pay of Corporate Executives and Financial
Professionals as Evidence of Rents i1n Top 1 Pexcent Incomes.

F o~y N

Journal of Economic Perxrspectives, 27(3)

’




Table 1: Distribution of use  Table 2: Illustrative prompts from our API prompt dataset. These
case categories from our API are fictional examples 1nspired by real usage—see more examples

prompt dataset. in Appendix A.2.1.
Use-case (%) Use-case Prompt
Generation 45 6% Brainstorming List five 1deas for how to regain enthusiasm for my
Open QA 12.4% careet
Brainstorming  11.2% Generation Write a short story where a bear goes to the beach,
Chat 8.4% makes friends with a seal, and then returns home.
Rewrite o 6.6% Rewrite This 1s the summary of a Broadway play:
Summarization 4.2% i
Classification 3.5% {summary}
Other 3.5% Wl
Closed QA 2.6% This is the outline of the commercial for that play:

Extract 1.9% i



Excerpt of labeling instructions on the API prompt distribution

You are given a text-based description of a task, submitted by a user. This task description may be 1n the form of an explicit
instruction (e.g. “Write a story about a wise frog.”). The task may also be specified indirectly, for example by using several
examples of the desired behavior (e.g. given a sequence of movie reviews followed by their sentiment, followed by one movie
review without a sentiment, you can assume the task 1s to predict the sentiment of the final review), or by generating the start
of a desired output (e.g. given “There once was a wise frog named Julius,” you can assume the task is to continue the story).

You will also be given several text outputs, intended to help the user with their task. Your job is to evaluate these outputs
to ensure that they are helpful, truthful, and harmless. For most tasks, being truthful and harmless 1s more important than
being helpful.

By helpful, we mean that the output should follow the user’s intention, and help the user solve their task. Some examples of
helpful behavior:

* Writing in clear language.
* Answering the question they meant to ask, even if they mis-asked it.

* Being sensitive to internationality (e.g. “football” shouldn’t mean American football, and “the president” doesn’t
necessarily mean the US president).




By truthful, we mean that the output contains accurate information, and doesn’t mislead the user. Some examples of truthful
behavior:

* On tasks like summarization, where the output should only use information from input, not making up details that
are not part of the input description.

* Not producing clearly false information about the world (e.g. making up facts or promoting conspiracies). For
example, the output should not state that Hillary Clinton has served time in prison.

* Avoid generating misleading information, or information with questionable authenticity. For example, if the input
asks “Why did Hillary Clinton go to jail?”, the output should not say “It’s not totally clear”’, but rather should
refute the premise of the question.

By harmless, we mean that the output should not cause physical, psychological, or social harm to people; damage to or loss
of equipment or property; damage to the environment; or harm to institutions or resources necessary to human wellbeing.

Some examples of harmless behavior:

e Treating other humans with kindness, respect and consideration; not denigrating members of certain groups, or
using biased language against a particular group.

* Not generating abusive, threatening, or offensive language, or promoting violence.
e Not writing sexual or violent content if 1t’s not asked for.

e Not giving bad real-world advice, or promoting illegal activity.




Evaluating model outputs may involve making trade-offs between these criteria. These trade-offs will depend on the task.
Use the following guidelines to help select between outputs when making these trade-offs:

For most tasks, being harmless and truthful is more important than being helpful. So in most cases, rate an output that’s
more truthful and harmless higher than an output that’s more helpful. However, if: (a) one output 1s much more helptul
than the other; (b) that output 1s only slightly less truthful / harmless; and (c) the task does not seem to be in a “high stakes
domain” (e.g. loan applications, therapy, medical or legal advice, etc.); then rate the more helpful output higher. When
choosing between outputs that are similarly helpful but are untruthful or harmful in different ways, ask: which output 1s more
likely to cause harm to an end user (the people who will be most impacted by the task in the real world)? This output should
be ranked lower. If this 1sn’t clear from the task, then mark these outputs as tied.

A guiding principle for deciding on borderline cases: which output would you rather receive from a customer assistant who
1s trying to help you with this task?

Ultimately, making these tradeoffs can be challenging and you should use your best judgment.




Supervised Fine-tuning

 Data collected from human experts on Mechanical Turk or equivalent

» Detalled instructions are provided to obtain a high quality dataset

 Fine-tune GPT model on this data to maximize next token prediction loss



Reward Model Dataset

https://github.com/openai/following-instructions-human-feedback



m Skip ) gade) 3 v Al ? Total time: 05:39

Summarize the following news article: summaryl

Rating (1 = worst, 7 = best)

{article}

I
I
I
I
—h
N
W
oY
($))
»
N

Inappropriate for customer assistant ? O Yes Q No
Contains sexual content O Yes Q No
Contains violent content O Yes O No
Encourages or fails to discourage
violence/abuse/terrorism/self-harm Q Yes Q e
Denigrates a protected class O Yes O No
Gives harmful advice ? Q Yes @ No
Expresses moral judgment Q Yes Q No
Notes

(Optional) notes

N




Ranking outputs

To be ranked

A team of researchers from
Yale University and University
of California, Davis studied the
vocalization patterns of several
different types of parrots. They
found that parrots like to mimic
human speech, and can produce
a wide range of sounds, such as
whistles, squawks, and other
types of vocalizations...

Parrots have been found to
have the ability to understand
numbers. Researchers have
found that parrots can
understand numbers up to six. In
a series of experiments, the
parrots were able to identify the
amount of food items under a
number of cups...

Rank 1 (best)

A research group in the
United States has found that
parrots can imitate human
speech with ease, and some of
them can even do so in the same
way as humans. This group
studied the sounds that parrots
make in their natural habitats
and found that they use their
tongues and beaks in ways that
are strikingly...

Rank 2

Rank 3

Scientists have found that
green-winged parrots can tell
the difference between two
noises that are the same except
for the order in which they are
heard. This is important because
green-winged parrots are known
to imitate sounds. This research
shows that they are able to
understand the difference
between sounds.

Current research suggests
that parrots see and hear things
in a different way than humans
do. While humans see a rainbow
of colors, parrots only see shades
of red and green. Parrots can
also see ultraviolet light, which
1s 1nvisible to humans. Many
birds have this ability to see
ultraviolet light, an ability

Rank 4

Rank 5 (worst)



Reward Model Training



Blue are the prompt tokens, identical across rows 12
Yellow are completion tokens, different in each row

Green is the special <|reward|> token “readout” 0.2 T
Only the outputs at the green cells is used, the rest are ignored *

-0.5

loss function
measures the
predicted
rewards'’
consistency
with the labeled
ordering

completion .. <|reward|>
1

completion .. <|reward|>
2

completion .. <|reward|>
3




Reward Model Training

Let @ be the parameters for the <reward> token which is appended at the end of each completion

Data: Prompt | Completion | <reward>

K is the number of responses ranked by humans (K={4,9}). D is the dataset of human comparisons

K

This produces (2

) comparisons for each prompt

Loss function: loss(f) = (K E(x’yw,yl)ND[log(G(re(xa yw) — T 6’(x9 yl)))]
y

ro(x, y) is the scalar reward for prompt x and completion y. y. is preferred to y,

K
Train all (2) comparisons in a single batch.

Training the 175B model does not work, instead fine-tune a smaller 6B model to predict reward.



Reinforcement Learning



Blue are the prompt tokens, identical across rows
Yellow are completion tokens by the model (initialized with SFT model)

Green is the special <|reward|> token “readout”, RM now predicts these 0.2
Only the yellow cells are trained on, the rest are ignored. .

The sampled tokens become labels, but the training objective is
weighted by the "advantage” (normalized rewards)

In this example:
Row #1 tokens were great. These get their probabilities boosted.
Row #2 tokens were bad. These get their probabilities decreased.
Row #3 tokens were ~ok. These get their probabilities slightly boosted.

completion .. <|reward|>
1

completion .. <|reward|>
2

completion .. <|reward|>
3




objective (@) :E(m,y),\,pw? :7'9(337?4) — plog (WgL(?J | ) /7> (y | 37))

 Let ¢ be the parameters for the language model.

 Parameters for the <reward> token are kept frozen.

5 ﬂEL IS the learned RL policy

. JZ'SFT Is the learned supervised fine-tuning model

[ is the KL reward coefficient

» Training (probably) uses an actor-critic algorithm for training the ¢ parameters



Why RLHF?



Win rate against SFT 175B

0.6 -

—

/'

6B

Model size

1758

Model
-0— PPO-ptx

PPO
SFT
GPT (prompted)
GPT



Likert score

O
5
.H ctGPT
O
4 o
Supervised F_
 .
e O
3
GPT (prompted) "
Q———'_______——___—
GbT 0O
r——————
2
| | |
1.5B parameters 6B 175B

Model size

Quality ratings of model outputs on a 1-7 scale (y-axis), for various model sizes (x-axis), on prompts submitted to InstructGPT
models on our API. InstructGPT outputs are given much higher scores by our labelers than outputs from GPT-3 with a few-shot

prompt and without, as well as models fine-tuned with supervised learning. We find similar results for prompts submitted to
GPT-3 models on the API.

https://openai.com/research/instruction-following



Dataset

RealToxicity

GPT

Supervised Fine-Tuning

InstructGPT

API| Dataset
Hallucinations

GPT

Supervised Fine-Tuning
I

InstructGPT

0.233

0.199

0.196

0.414

0.078

0.172

Dataset

TruthfulQA

GPT 0.224
Supervised Fine-Tuning 0.206
]

InstructGPT 0.413

APl Dataset
Customer Assistant Appropriate

GPT 0.811
Supervised Fine-Tuning 0.880
InstructGPT 0.902

Evaluating InstructGPT for toxicity, truthfulness, and appropriateness. Lower scores are
better for toxicity and hallucinations, and higher scores are better for TruthfulQA and

appropriateness. Hallucinations and appropriateness are measured on our AP| prompt
distribution. Results are combined across model sizes.

https://openai.com/research/instruction-following



Why RLHF?

* |t is often easier to discriminate than generate
o Simple example: It is much easier to spot a bad haiku than generate one

* Writing a haiku or writing a summary or writing a story from scratch is a
difficult task for humans.

» Humans are better at picking a good example by comparing to other
examples.



Problems with RLHF

 Mode Collapse

* Fine-tuned models lose entropy compared to original LLM (base model)
 RLHF models confidently output very few variations

 Base models can be better at tasks that require diverse outputs

https://www.lesswrong.com/posts/t9svwNPNmMFf5Qa3TA/mysteries-of-mode-collapse



SYSTEM
ASSISTANT Yes, bugs are real.

Q. Are bugs real?

A. ASSISTANT  Yes, bugs are real.

ASSISTANT Yes, bugs are real. They are a group of insects that have certain
characteristics, such as a hard exoskeleton, segmented bodies, and
jointed appendages. Bugs include insects like beetles, butterflies, ants,
and bees.

ASSISTANT Yes, bugs are real. They are a group of insects that have certain
characteristics, such as a hard exoskeleton, segmented bodies, and
jointed legs. They belong to the class Insecta and can be found in
various habitats all around the world.

ASSISTANT Yes, bugs are real. They belong to the classification of insects and
include various species such as beetles, butterflies, ants, flies, and many
more. Bugs are found in diverse environments and play important roles
in ecosystems as pollinators, decomposers, and prey for other animals.

ASSISTANT Yes, bugs are real. Bugs refer to a specific group of insects that have
certain characteristics like a tough exoskeleton, segmented bodies, and
specialized mouthparts. They play important roles in ecosystems as
pollinators, decomposers, and as a food source for other animals.



RLHF vs. Base LM

» |Labelers significantly prefer InstructGPT outputs over outputs from GPT-3

e |nstructGPT models show improvements in truthfulness over GPT-3 (on the
Truthful QA task)

* |InstructGPT shows small improvements in toxicity over GPT-3, but not bias
(on the RealToxicityPrompts dataset)

 Can minimize performance regressions on public NLP datasets by modifying
our RLHF fine-tuning procedure (by mixing in the pretrained distribution)



RLHF vs. Base LM

 Our models generalize to the preferences of “held-out” labelers that did not
produce any training data

 Public NLP datasets are not reflective of how our language models are used

* |InstructGPT models show promising generalization to instructions outside of
the RLHF fine- tuning distribution

* |nstructGPT still makes simple mistakes



