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Compressing Large Language Models

Reduce memory and compute costs

* There are many different ways to solve the compression problem:

¢1. Distillation: train a small lightweight student model on the output of a large
teacher model.

2. Pruning:. Use an importance criterion to prune weights, prune layers, prune
attention heads, etc.

3. Reduce precision of the weights: FP16, int8, etc.

4. Low rank factorization of weight matrices.

5. Weight sharing (ALBERT).
https://doi.org/10.1162/tacl a 00413
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Distillation



Distilling the Knowledge in a Neural Network

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, NIPS 2014 DL workshop

https://arxiv.org/abs/1503.02531

See also: Bucila, Caruana,
and Niculescu-Mizil. Model
compression. In KDD, 2006.


https://arxiv.org/abs/1503.02531

Large Language Models

Are they necessary?

» Scaling to larger language models has led to improved zero-shot and few-
shot accuracy on many NLP tasks.

* All modern deep learning models are heavily over-parameterized compared to
the dataset size they train on.

 Smaller models by themselves do not give the same accuracy.
 Deployment of LLMs is challenging from a compute cost perspective.

o "Distill" a student model by training it on the output of a "teacher” model (a
LLM).



Standard setup

for training a language model

 Minimize the log likelihood loss for prediction.

. . , Ing(Wt — k ‘ Xl;z—l;e)
» Find parameters 6 to minimize loss <

ANy =
P = _ Z Z o(x, = klogp(w, = k | x;.,_1;0) — E
t ke7?

w, is the softmax over the vocabulary 7/
X, Is the ground truth target token; X is the sentence

o(p) = 1 if pis true and 0 otherwise



Knowledge Distillation

Can be used for pre-training or fine-tuning

* Train a larger teacher model (massive LLM models) to get a teacher
distribution over outputs ¢g( - ) with parameters 0

 Train a smaller student model p( - ) to mimic the teacher

» The student model has parameters 6 << 0



Word level distillation

for training a language model

S log g(w, = k | Xy,,_1; 0r)
» Teacher distribution: g(w, | X;.,_1; 6;) t e

W

* Standard loss: VNV
1 w.=k| X, ;6

L = — 2 Z o(x, = k)logp(w, = k | X{.,_1;60) 08P = K X113 0)

t ke?

» Distillation loss (uses cross entropy between p and q):

Lp=- Z Z qw, = k| X1,,_1; 0plogp(w, = k | X;.,_1;0)
t k€7

o(p) = 1 if p is true and O otherwise



No Knowledge Distillation

Fig from https://
nip.seas.harvard.edu/slides/
emnlp16_segkd.pdf
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Word Level Knowledge Distillation

Fig from https://
nip.seas.harvard.edu/slides/
emnlp16_segkd.pdf
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Combine standard loss and Ground Truth

distillation loss E ¢ D
O]
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Soft targets

» Standard method to compute p(w, = k | X;.,_;; 0)

_ exp(z;)
z ; eXp (Zi)

Z; are the logits used to compute the softmax

Pk

* Divide the logits by a temperature parameter to get a softer distribution
Lk
exp(=)

pi=——
Y exp(=)



Soft targets

« Gradient wrt g,

0Ly L1, exp(=)  exp(=}) ORI
— — - . — 1, — V
0z, T 4k — Pk T Z exp(. ) ZieXP(%) T2 kT Tk

Z;, V; are the logits used to compute the softmax for the teacher and student
respectively

assuming the logits are zero-meaned, I.e. 2 z; = 0 and 2 v. =0

l l



Fig from Hinton's "Dark Knowledge"

talk slides
Soft targets
COW dog cat car
0 1 0 0 Hard Target

COW dog cat car

107° 9 1 02| Teacher distribution
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"Softened outputs reveal the dark knowledge in the teacher distribution”



Soft targets from BERT output distribution
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Fig from https://medium.com/huggingface/distilbert-8cf3380435b5



import torch
import torch.nn as nn

- - - import torch.nn.functional as F
DIStIIIatIOn from torch.optim import Optimizer
[ |
training step

def kd_step(teacher: nn.Module,

nn.KLDivLoss(reduction="'batchmean')

student: nn.Module,
temperature: float,
inputs: torch.tensor,
optimizer: Optimizer):
teacher.eval()
student.train()

with torch.no_grad():
logits_t = teacher(inputs=inputs)
logits_s = student(inputs=inputs)

loss = KD_loss(input=F.log_softmax(logits_s/temperature, dim=-1),
target=F.softmax(logits_t/temperature, dim=-1))

loss.backward()
optimizer.step()
optimizer.zero_grad()

Fig from https://medium.com/huggingface/distilbert-8cf3380435b5



Soft targets and combined loss

Fe=aZ+(1-a)&,

Temperature is set to 1
for Ground Truth

Higher temperature
used for Teacher
Distribution

Fig from https://
nip.seas.harvard.edu/slides/
emnlp16_segkd.pdf
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Model Size and Computations

—~ 200 - :
7n B Model Size L 5000
= SN Computations
-
S 100 - i
: J -
. Lerr as 0- N\ N AN o
DIStIIIatlon Of Embedding Linear Multi-Head Linear Feed Forward
Layer before Attn. Self-Attention after Attn. Network
BER I mOdeIS Runtime Memory Consumption
o 75 | EEE GPU (GPU)
Z =4 GPU (CPU)
¢ 501 mmm cpu
B
=
0 4 e—
Embedding Linear Multi-Head Linear Feed Forward
Layer before Attn. Self-Attention after Attn. Network
Inference Latency
¢ | ==m GPU
227 == cpu
v
£ 1-
=
-
o
https://doi.org/10.1162/tacl a 00413 Embedding Linear Multi-Head Linear Feed Forward

Layer before Attn. Self-Attention after Attn. Network

MFLOPs


https://doi.org/10.1162/tacl_a_00413

Distillation of BERT models
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DistiiBERT

o "Our student is a small version of BERT in which we removed the token-type
embeddings and the pooler (used for the next sentence classification task) and kept
the rest of the architecture identical while reducing the numbers of layers by a factor
of two."

 Why not reduce the hidden size as well?

* "In our experiments, the number of layers was the determining factor for the
Inference time, more than the hidden size."

e Using L2 loss instead of cross-entropy loss?
e "cross-entropy loss leads to significantly better performance”
e |nitialization is important

 "We thus initialize our student ... by taking one layer out of two, leveraging the
common hidden size between student and teacher."

https://medium.com/huggingface/distilbert-8cf3380435b5



DistiiBERT

GLUE BASELINE (ELMo + BiLSTMs)
BERT base
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Distillation of BERT models

Different ways to distill information from a teacher

 Distillation during fine-tuning:
« On SQUAD 1.1 (QA task) BERT gets 88.5 F1 and DistiIBERT gets 85.1

* Fine-tuning DistiIBERT on the QA task using a fine-tuned BERT model gets
86.2 F1.

* Distillation from Output Logits
» Distillation from Encoder Outputs (distil each layer)

» Distillation from Attention Maps (attn is softmax so can be easily distilled)



Pruning



THE LOTTERY TICKET HYPOTHESIS:
FINDING SPARSE, TRAINABLE NEURAL NETWORKS

Jonathan Frankle Michael Carbin
MIT CSAIL MIT CSAIL
jfrankle@csail.mit.edu mcarbin@csail.mit.edu

The Lottery Ticket Hypothesis. A randomly-initialized, dense neural network contains a subnet-
work that is initialized such that—when trained in isolation—it can match the test accuracy of the
original network after training for at most the same number of iterations.

https://arxiv.org/abs/1803.03635
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ldentifying winning tickets

Using iterative pruning

 We are training a large neural network f using training data x

1. Randomly initialize f(x; 6,) where 6, € I, (distribution over parameters)

2. Train the network for j iterations, finding parameters 9]
3. Prune p% of the parameters in 6’] with smallest magnitude creating a mask m

4. Reset remaining parameters to values from 6, creating the winning ticket

Jlx;m© 6,)

- Then repeat: retrain f and prune p% of the parameters iteratively for n rounds



ldentifying winning tickets in BERT

Table 2: Performance of subnetworks at the highest sparsity for which IMP finds winning tickets
on each task. To account for fluctuations, we consider a subnetwork to be a winning ticket if its
performance i1s within one standard deviation of the unpruned BERT model. Entries with errors
are the average across five runs, and errors are the standard deviations. IMP = iterative magnitude
pruning; RP = randomly pruning; 6, = the pre-trained weights; 6/, = random weights; 6 = randomly
shuffled pre-trained weights.

Dataset

MNLI QQP STSSB  WNLI  QNLI  MRPC RTE SST-2  CoLA  SQuAD MLM
Sparsity 70% 90% 50% 90% 70% 50% 60% 60% 50% 40% 70%
Full BERTgase | 82.4+0.5 90.24+0.5 88.4+0.3 5494+ 12 89.14+1.0 85.2+0.1 66.2+3.6 92.1 +0.1 545+ 0.4 88.1 +0.6 | 63.5+0.1
Flz,mmp ®0) | 82.6 £0.2 90.0 +0.2 882 +0.2 549+ 1.2 88.9+ 0.4 849+ 04 66.0+2.4 91.9+0.5 53.8+0.9 87.7+0.5 | 63.2+0.3
f(z,mrp © o) 67.5 76.3 21.0 53.5 61.9 69.6 56.0 83.1 9.6 31.8 32.3
f(z, mmp © 0)) 61.0 77.0 9.2 53.5 60.5 68.4 54.5 80.2 0.0 18.6 14.4
f(z, mmp © 67) 70.1 79.2 19.6 53.3 62.0 69.6 52.7 82.6 4.0 24.2 42.3

https://arxiv.org/abs/2007.12223
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ldentifying winning tickets in BERT

Table 3: Performance of subnetworks found using IMP with rewinding to the steps in the left column
and standard pruning (where subnetworks are trained using the final weights from the end of training).

Dataset MNLI QQP STS-B WNLI QNLI MRPC RTE SST-2 CoLA SQuAD | MILLM
Sparsity 0%  90% 50% 90% 70% 50% 60%  60% 50% 40% 70%
Full BERTgASE 82.39 90.19 8844 5493 89.14 8523 66.16 92.12 5451 88.06 | 63.48
Rewind 0% (i.e., 0y) | 8245 89.20 88.12 5493 88.05 84.07 66.06 91.74 52.05 87.74 | 63.07
Rewind 5% 8299 8898 88.05 5493 83.835 83.82 62.09 9243 53.38 87.78 | 63.18
Rewind 10% 8293 89.08 88.11 5493 89.02 84.07 6209 9266 52.61 87.77 | 63.49
Rewind 20% 83.08 89.21 88.28 55.75 88.837 85.78 61.73 9289 52.02 87.36 | 63.82
Rewind 50% 8294 8954 8841 5332 83.72 8554 6245 92.66 5220 87.26 | 64.21
Standard Pruning 82.11 89.97 8851 5282 8988 85.78 6295 90.02 5200 87.12 | 63.77

https://arxiv.org/abs/2007.12223

Also see: https://aclanthology.org/

2020.emnlp-main.259/
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MLM Validation Perplexity

Effect of RoBERTa Depth on Training
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