Model Compression

Advanced NLP: Summer 2023

Anoop Sarkar

Compressing Large Language Models

Reduce memory and compute costs

* There are many different ways to solve the compression problem:

¢1. Distillation: train a small lightweight student model on the output of a large
teacher model.

2. Pruning:. Use an importance criterion to prune weights, prune layers, prune
attention heads, etc.

3. Reduce precision of the weights: FP16, int8, etc.

4. Low rank factorization of weight matrices.

5. Weight sharing (ALBERT).
https://doi.org/10.1162/tacl a 00413

https://doi.org/10.1162/tacl_a_00413

Distillation

Distilling the Knowledge in a Neural Network

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, NIPS 2014 DL workshop

https://arxiv.org/abs/1503.02531

See also: Bucila, Caruana,
and Niculescu-Mizil. Model
compression. In KDD, 2006.

https://arxiv.org/abs/1503.02531

Large Language Models

Are they necessary?

» Scaling to larger language models has led to improved zero-shot and few-
shot accuracy on many NLP tasks.

* All modern deep learning models are heavily over-parameterized compared to
the dataset size they train on.

 Smaller models by themselves do not give the same accuracy.
 Deployment of LLMs is challenging from a compute cost perspective.

o "Distill" a student model by training it on the output of a "teacher” model (a
LLM).

Standard setup

for training a language model

 Minimize the log likelihood loss for prediction.

. . , Ing(Wt — k ‘ Xl;z—l;e)
» Find parameters 6 to minimize loss <

ANy =
P = _ Z Z o(x, = klogp(w, = k | x;.,_1;0) — E
t ke7?

w, is the softmax over the vocabulary 7/
X, Is the ground truth target token; X is the sentence

o(p) = 1 if pis true and 0 otherwise

Knowledge Distillation

Can be used for pre-training or fine-tuning

* Train a larger teacher model (massive LLM models) to get a teacher
distribution over outputs ¢g(-) with parameters 0

 Train a smaller student model p(-) to mimic the teacher

» The student model has parameters 6 << 0

Word level distillation

for training a language model

S log g(w, = k | Xy,,_1; 0r)
» Teacher distribution: g(w, | X;.,_1; 6;) t e

W

* Standard loss: VNV
1 w.=k| X, ;6

L = — 2 Z o(x, = k)logp(w, = k | X{.,_1;60) 08P = K X113 0)

t ke?

» Distillation loss (uses cross entropy between p and q):

Lp=- Z Z qw, = k| X1,,_1; 0plogp(w, = k | X;.,_1;0)
t k€7

o(p) = 1 if p is true and O otherwise

No Knowledge Distillation

Fig from https://
nip.seas.harvard.edu/slides/
emnlp16_segkd.pdf

Ground Truth
E C D

[

L LT T

Student Network

Word Level Knowledge Distillation

Fig from https://
nip.seas.harvard.edu/slides/
emnlp16_segkd.pdf

|

4

A
¢

+

Teacher Network

-

|
—
-
-
-
———
.
-
-
-
N —
—_—
—

.

Student Network

Combine standard loss and Ground Truth

distillation loss E ¢ D
O]

Le=aZL+ (1 —-a), 1 B F 4 ~ ©
4 H F o

|

4

A
/

-

1 1
I |
-
- .
-
-
-~ Y
- - - ‘-
- iy
H‘ - ‘\ —
\‘ ‘\ b-
-
- -
- -
- -
- = s
-
- -
- -
-‘ B
- . o
-
B S
—
—
[]
g .

nip.seas.harvard.edu/slides/
emnlp16_segkd.pdf Teacher Network Student Network

Soft targets

» Standard method to compute p(w, = k | X;.,_;; 0)

_ exp(z;)
z ; eXp (Zi)

Z; are the logits used to compute the softmax

Pk

* Divide the logits by a temperature parameter to get a softer distribution
Lk
exp(=)

pi=——
Y exp(=)

Soft targets

« Gradient wrt g,

0Ly L1, exp(=) exp(=}) ORI
— — - . — 1, — V
0z, T 4k — Pk T Z exp(.) ZieXP(%) T2 kT Tk

Z;, V; are the logits used to compute the softmax for the teacher and student
respectively

assuming the logits are zero-meaned, I.e. 2 z; = 0 and 2 v. =0

l l

Fig from Hinton's "Dark Knowledge"

talk slides
Soft targets
COW dog cat car
0 1 0 0 Hard Target

COW dog cat car

107° 9 1 02| Teacher distribution
COW dog cat car

.05 3 2 005 Softened distribution

"Softened outputs reveal the dark knowledge in the teacher distribution”

Soft targets from BERT output distribution

Input:

Rank
Rank
Rank
Rank
Rank
Rank
Rank
Rank
Rank
Rank
Rank
Rank
Rank
Rank
Rank
Rank
Rank
Rank
Rank
Rank

OCONOUTSEHEWNRELS

PSS
— Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:

lil'
day
life

‘think®, 'thi

future —

story
world
era
time
year

history -
summer =
adventure —

dream

moment =

night

beginning —
season —
journey -
period -
relationship -

thing

e

'iS',
Prob:
Prob:
Prob:
Prob:
Prob:
Prob:
Prob:
Prob:
Prob:
Prob:
Prob:
Prob:
Prob:
Prob:
Prob:
Prob:
Prob:
Prob:
Prob:
Prob:

(S IS B IS RS TGS IS RS G B S BUGS TGS B BEGS B S B G B S RS B O

"the’,
.21348
. 18380
. 06267
. 05854
. 04935
. 04555
.03210
.01722
.01663
.01335
.01233
.01209
.01129
. 01084
. 00937
. 00664
. 00621
. 00553
. 00517
. 00508

'beginning', 'of', 'a', 'beautiful', '[MASK]', '.', '[SEP]']

Fig from https://medium.com/huggingface/distilbert-8cf3380435b5

import torch
import torch.nn as nn

- - - import torch.nn.functional as F
DIStIIIatIOn from torch.optim import Optimizer
[|
training step

def kd_step(teacher: nn.Module,

nn.KLDivLoss(reduction="'batchmean')

student: nn.Module,
temperature: float,
inputs: torch.tensor,
optimizer: Optimizer):
teacher.eval()
student.train()

with torch.no_grad():
logits_t = teacher(inputs=inputs)
logits_s = student(inputs=inputs)

loss = KD_loss(input=F.log_softmax(logits_s/temperature, dim=-1),
target=F.softmax(logits_t/temperature, dim=-1))

loss.backward()
optimizer.step()
optimizer.zero_grad()

Fig from https://medium.com/huggingface/distilbert-8cf3380435b5

Soft targets and combined loss

Fe=aZ+(1-a)&,

Temperature is set to 1
for Ground Truth

Higher temperature
used for Teacher
Distribution

Fig from https://
nip.seas.harvard.edu/slides/
emnlp16_segkd.pdf

HEEN
L 11] |

|

4

A
d

4

Ground Truth
E C D

[

L LT AT

Teacher Network

I
|
1
e
—
-
-
—
‘\
-
‘\—
—
—

Student Network

Model Size and Computations

—~ 200 - :
7n B Model Size L 5000
= SN Computations
-
S 100 - i
: J -
. Lerr as 0- N\ N AN o
DIStIIIatlon Of Embedding Linear Multi-Head Linear Feed Forward
Layer before Attn. Self-Attention after Attn. Network
BER I mOdeIS Runtime Memory Consumption
o 75 | EEE GPU (GPU)
Z =4 GPU (CPU)
¢ 501 mmm cpu
B
=
0 4 e—
Embedding Linear Multi-Head Linear Feed Forward
Layer before Attn. Self-Attention after Attn. Network
Inference Latency
¢ | ==m GPU
227 == cpu
v
£ 1-
=
-
o
https://doi.org/10.1162/tacl a 00413 Embedding Linear Multi-Head Linear Feed Forward

Layer before Attn. Self-Attention after Attn. Network

MFLOPs

https://doi.org/10.1162/tacl_a_00413

Distillation of BERT models

Distillation from

—] output logits — e t
Final layer Final layer eplacements
f }
Distillation from T
— } T Encoders
T/ d tout f (a) Enco
e [| N PoTer o \ “==y with reduced (c) BILSTMs
= T/ Distillation from t width (H)
- attention maps —d h o
2 Self-attention .
3 ? - y
c : (b) Reduced
LL] A
- / S \ number of /§<O>€\ (d) CNNs
encoders (L)
Teacher Student

https://doi.org/10.1162/tacl a 00413

https://doi.org/10.1162/tacl_a_00413

DistiiBERT

o "Our student is a small version of BERT in which we removed the token-type
embeddings and the pooler (used for the next sentence classification task) and kept
the rest of the architecture identical while reducing the numbers of layers by a factor
of two."

 Why not reduce the hidden size as well?

* "In our experiments, the number of layers was the determining factor for the
Inference time, more than the hidden size."

e Using L2 loss instead of cross-entropy loss?
e "cross-entropy loss leads to significantly better performance”
e |nitialization is important

 "We thus initialize our student ... by taking one layer out of two, leveraging the
common hidden size between student and teacher."

https://medium.com/huggingface/distilbert-8cf3380435b5

DistiiBERT

GLUE BASELINE (ELMo + BiLSTMs)
BERT base
DistilBERT

44 .1

55.8
42.5

71.1
91.1
85.5

70.8

86.3
82.4

82.3
90.5
88.3

88.0 84.3 53.4 91.5 70.3 70.5 56.3
90.9 87.7 68.6 92.1 89.0 88.6 43.7

“o06 | 877 | 600 | 27 | 845 | 860 | 566

GLUE BASELINE (ELMo + BiLSTMs)
BERT base

DistilBERT

Distillation of BERT models

Different ways to distill information from a teacher

 Distillation during fine-tuning:
« On SQUAD 1.1 (QA task) BERT gets 88.5 F1 and DistiIBERT gets 85.1

* Fine-tuning DistiIBERT on the QA task using a fine-tuned BERT model gets
86.2 F1.

* Distillation from Output Logits
» Distillation from Encoder Outputs (distil each layer)

» Distillation from Attention Maps (attn is softmax so can be easily distilled)

Pruning

THE LOTTERY TICKET HYPOTHESIS:
FINDING SPARSE, TRAINABLE NEURAL NETWORKS

Jonathan Frankle Michael Carbin
MIT CSAIL MIT CSAIL
jfrankle@csail.mit.edu mcarbin@csail.mit.edu

The Lottery Ticket Hypothesis. A randomly-initialized, dense neural network contains a subnet-
work that is initialized such that—when trained in isolation—it can match the test accuracy of the
original network after training for at most the same number of iterations.

https://arxiv.org/abs/1803.03635

https://arxiv.org/abs/1803.03635

ldentifying winning tickets

Using iterative pruning

 We are training a large neural network f using training data x

1. Randomly initialize f(x; 6,) where 6, € I, (distribution over parameters)

2. Train the network for j iterations, finding parameters 9]
3. Prune p% of the parameters in 6’] with smallest magnitude creating a mask m

4. Reset remaining parameters to values from 6, creating the winning ticket

Jlx;m© 6,)

- Then repeat: retrain f and prune p% of the parameters iteratively for n rounds

ldentifying winning tickets in BERT

Table 2: Performance of subnetworks at the highest sparsity for which IMP finds winning tickets
on each task. To account for fluctuations, we consider a subnetwork to be a winning ticket if its
performance i1s within one standard deviation of the unpruned BERT model. Entries with errors
are the average across five runs, and errors are the standard deviations. IMP = iterative magnitude
pruning; RP = randomly pruning; 6, = the pre-trained weights; 6/, = random weights; 6 = randomly
shuffled pre-trained weights.

Dataset

MNLI QQP STSSB WNLI QNLI MRPC RTE SST-2 CoLA SQuAD MLM
Sparsity 70% 90% 50% 90% 70% 50% 60% 60% 50% 40% 70%
Full BERTgase | 82.4+0.5 90.24+0.5 88.4+0.3 5494+ 12 89.14+1.0 85.2+0.1 66.2+3.6 92.1 +0.1 545+ 0.4 88.1 +0.6 | 63.5+0.1
Flz,mmp ®0) | 82.6 £0.2 90.0 +0.2 882 +0.2 549+ 1.2 88.9+ 0.4 849+ 04 66.0+2.4 91.9+0.5 53.8+0.9 87.7+0.5 | 63.2+0.3
f(z,mrp © o) 67.5 76.3 21.0 53.5 61.9 69.6 56.0 83.1 9.6 31.8 32.3
f(z, mmp © 0)) 61.0 77.0 9.2 53.5 60.5 68.4 54.5 80.2 0.0 18.6 14.4
f(z, mmp © 67) 70.1 79.2 19.6 53.3 62.0 69.6 52.7 82.6 4.0 24.2 42.3

https://arxiv.org/abs/2007.12223

https://arxiv.org/abs/2007.12223

ldentifying winning tickets in BERT

Table 3: Performance of subnetworks found using IMP with rewinding to the steps in the left column
and standard pruning (where subnetworks are trained using the final weights from the end of training).

Dataset MNLI QQP STS-B WNLI QNLI MRPC RTE SST-2 CoLA SQuAD | MILLM
Sparsity 0% 90% 50% 90% 70% 50% 60% 60% 50% 40% 70%
Full BERTgASE 82.39 90.19 8844 5493 89.14 8523 66.16 92.12 5451 88.06 | 63.48
Rewind 0% (i.e., 0y) | 8245 89.20 88.12 5493 88.05 84.07 66.06 91.74 52.05 87.74 | 63.07
Rewind 5% 8299 8898 88.05 5493 83.835 83.82 62.09 9243 53.38 87.78 | 63.18
Rewind 10% 8293 89.08 88.11 5493 89.02 84.07 6209 9266 52.61 87.77 | 63.49
Rewind 20% 83.08 89.21 88.28 55.75 88.837 85.78 61.73 9289 52.02 87.36 | 63.82
Rewind 50% 8294 8954 8841 5332 83.72 8554 6245 92.66 5220 87.26 | 64.21
Standard Pruning 82.11 89.97 8851 5282 8988 85.78 6295 90.02 5200 87.12 | 63.77

https://arxiv.org/abs/2007.12223

Also see: https://aclanthology.org/

2020.emnlp-main.259/

https://arxiv.org/abs/2007.12223
https://aclanthology.org/2020.emnlp-main.259/
https://aclanthology.org/2020.emnlp-main.259/

MLM Validation Perplexity

Effect of RoBERTa Depth on Training

10- Model Depth
—3 Layers
— 6 Layers
—12 Layers
| —18 Layers
8. — 24 Layers
6-
4-

0 250000 500000 750000 1000000
Wall Clock (Seconds)

https://arxiv.org/abs/2002.11794

MNLI Validation Accuracy

0

Effect of RoBERTa Depth on Pruning

45% o 15%

Original Size
-3 Layers
--6 Layers
-o-12 Layers
-+ 18 Layers
-+ 24 |Layers

50 100 150
Number of Parameters (Millions)

0%

200

https://arxiv.org/abs/2002.11794

MNLI Validation Accuracy

RoBERTa Quantization

6b8b 6b 8b 32b
4b

0.85-

32b

32b

0.80- ’

32b

A5 32 Original Size
075 -e-J Layers, /68H

-+ 6 Layers, /68H

=12

<18

0.70 24
12

12
12
12

0.65-

et

0 500 1000

_ayers, /68H
_ayers, /68H
_ayers, /68H
_ayers, 256H
_ayers, 512H
_ayers, 1024H

_ayers, 1536H

Memory Usage (MB)

https://arxiv.org/abs/2002.11794

1500

MNLI Validation Accuracy

‘RoBERTa Pruning

% , 15% 9 0%
45% 20% 0% ;

Original Size
-e-3 Layers, /68H
-+ 6 Layers, /68H
12 Layers, 768H
- 18 Layers, 768H
24 |Layers, /768H
12 Layers, 256H
-»-12 Layers, 512H
-e-12 Layers, 1024H
-+ 12 Layers, 1536H

0 100 200 300
Number of Parameters (Millions)

https://arxiv.org/abs/2002.11794

